Preferred Language
Articles
/
joe-158
Some Properties of Carbon Fiber Reinforced Magnetic Reactive Powder Concrete Containing Nano Silica
...Show More Authors

         This study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano silica. Tap water was used for 12 of these mixtures, while magnetic water was used for the others. The nano silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % by weight of cement, were used for all the mixtures. The results have shown that the mixture containing 2.5% NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results have shown that the carbon fiber reinforced magnetic reactive powder concrete containing 2.5% NS (CFRMRPCCNS) had higher compressive strength, modulus of rupture, splitting tension, stress in compression and strain in compression than the corresponding values for the carbon fiber reinforced nonmagnetic reactive powder concrete containing the same ratio of NS (CFRNRPCCNS). The percentage increase in these values for CFRMRPCCNS were (22.37, 17.96, 19.44, 6.44 and 25.8) % at 28 days respectively, as compared with the corresponding CFRNRPCCNS mixtures.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
Some Properties of Concrete Containing Waste Brick As Partial Replacement Of Coarse Aggregate And Addition Of Nano Brick Powder
...Show More Authors
Abstract<p>The accumulation of construction and demolition waste is one of the major problems in modern construction. Hence, this research investigates the use of waste brick in concrete. Seven different concrete mixes were investigated in this study: a control concrete mix, three mixes with volumetric replacement (10, 20, and 30)% of natural aggregate with brick aggregate, and two mixes with the addition of nano brick powder at a percentage level of 5– 10% by weight of cementitious materials. And the last one was mixed with 10% nano brick and 10% coarse brick aggregate. The experimental results for the additive of nano brick powder showed an enhancement in mechanical properties (compressive, </p> ... Show More
View Publication Preview PDF
Scopus (8)
Crossref (8)
Scopus Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Behavior of Reinforced Concrete Deep Beams Strengthened with Carbon Fiber Reinforced Polymer Strips
...Show More Authors

This research is concerned to investigate the behavior of reinforced concrete (RC) deep beams strengthened with carbon fiber reinforced polymer (CFRP) strips. The experimental part of this research is carried out by testing seven RC deep beams having the same dimensions and steel reinforcement which have been divided into two groups according to the strengthening schemes. Group one was consisted of three deep beams strengthened with vertical U-wrapped CFRP strips. While, Group two was consisted of three deep beams strengthened with inclined CFRP strips oriented by 45o with the longitudinal axis of the beam. The remaining beam is kept unstrengthening as a reference beam. For each group, the variable considered

... Show More
View Publication Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Journal Of Engineering
Flexural Behavior of Reinforced Rubberized Reactive Powder Concrete Beams under Repeated Loads
...Show More Authors

Non-biodegradability of rubber tires contributes to pollution and fire hazards in the natural environment. In this study, the flexural behavior of the Rubberized Reactive Powder Concrete (RRPC) beams that contained various proportions and sizes of scrap tire rubber was investigated and compared to the flexural behavior of the regular RPC. Fresh properties, hardened properties, load-deflection relation, first crack load, ultimate load, and crack width are studied and analyzed. Mixes were made using micro steel fiber of the straight type, and they had an aspect ratio of 65. Thirteen beams were tested under two loading points (Repeated loading) with small-scale beams (1100 mm, 150 mm, 100 mm) size.

The fine aggregate

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Sep 12 2017
Journal Name
Nucl Sci Tech
Investigating the influence of gamma ray energies and steel fiber on attenuation properties of reactive powder concrete
...Show More Authors

Scopus (12)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Tue Sep 12 2017
Journal Name
Nuclear Science And Techniques
Investigating the influence of gamma ray energies and steel fiber on attenuation properties of reactive powder concrete
...Show More Authors

View Publication
Crossref (12)
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
BEHAVIOR OF CONCRETE BEAMS REINFORCED IN SHEAR WITH CARBON FIBER REINFORCED POLYMER
...Show More Authors

Carbon fiber reinforced polymers (CFRP) were widely used in strengthening reinforced concrete members
in the last few years, these fibers consist mainly of high strength fibers which increase the member capacity in addition to changing the mode of failure of the reinforced concrete beams. Experimental and theoretical investigations were carried to find the behavior of reinforced concrete beams strengthened by CFRP in shear and bending. The experimental work included testing of 12 beams divided into 4 groups; each group contains 3 beams. The following parameters were taken into consideration: - Concrete crushing strength. - CFRP strengthening location (shear strengthening and both shear and flexure strengthening). Reinforced beams were

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jul 04 2018
Journal Name
Civil Engineering Journal
Behavior of Reinforced Reactive Powder Concrete Two-Way Slabs under Static and Repeated Load
...Show More Authors

This paper studies the behavior of reinforced Reactive Powder Concrete (RPC) two-way slabs under static and repeated load. The experimental program included testing six simply supported RPC two-way slabs of 1000 mm length, 1000 mm width, and 70 mm thickness. All the tested specimens were identical in their material properties, and reinforcement details except their steel fibers content. They were cast in three pairs, each one had a different steel fibers ratio (0.5 %, 1 %, and 1.5 %) respectively. In each pair, one specimen was tested under static load and the other under five cycles of repeated load (loading-unloading). Static test results revealed that increasing steel fibres volume fraction from 0.5 % to 1 % and from 1% to 1.5%,

... Show More
View Publication
Crossref (10)
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Serviceability behavior of High Strength Concrete I-beams reinforced with Carbon Fiber Reinforced Polymer bars
...Show More Authors

Fiber Reinforced Polymer (FRP) bars are anisotropic in nature and have high tensile strength in the fiber direction. The use of High-Strength Concrete (HSC) allows for better use of the high-strength properties of FRP bars. The mechanical properties of FRP bars can yield to large crack widths and deflections. As a result, the design of concrete elements reinforced with FRP materials is often governed by the Serviceability Limit States (SLS). This study investigates the short-term serviceability behavior of FRP RC I-beams. Eight RC I-beams reinforced with carbon-FRP (CFRP) and four steel RC I-beams, for comparison purposes, were tested under two-point loading.
Deformations on the concrete and crack widths and spacing are measured and

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
International Journal Of Civil Engineering And Technology
Properties of reactive powder concrete with different types of cement
...Show More Authors

Publication Date
Mon Oct 01 2018
Journal Name
International Journal Of Civil Engineering And Technology
Properties of reactive powder concrete with different types of cement
...Show More Authors

Concrete is widely used in construction materials since early 1800's. It has been known that concrete is weak in tension, so it requires some addition materials to have ductile behavior and enhance its tensile strength and strain capacity to improve their uses. In this study reactive powder concrete (RPC) was used with steel fiber by using different types of cement; (Ordinary Portland cement (OPC) and/or Portland- Limestone cement (PLC)) with three types of mixtures (OPC at the first mix, 50 % OPC and 50 % PLC at the second mix and PLC at the third mix). The behavior of RPC with steel fibers on compressive strength and tensile strength of concrete with different ages of curing (7, 14, 28 and 60) days and shrinkage have been studied. The clo

... Show More
Scopus (8)
Scopus