This research investigates manganese (Mn) extraction from Electric Arc Furnace Steel Slag (EAFS) by using the Liquid-liquid extraction (LLE) method. The chemical analysis was done on the slag using X-ray fluorescence, X-ray diffraction, and atomic absorption spectroscopy. This work consisted of two parts: the first was an extensive study of the effect of variables that can affect the leaching process rate for Mn element from slag (reaction time, nitric acid concentration, solid to liquid ratio, and stirring speed), and the second part evaluates the extraction of Mn element from leached solution. The results showed the possibility of leaching 83.5 % of Mn element from the slag at a temperature of 25°C, nitric acid concentration 2 M, time 90 min, S / L ratio 1/100, and stirring speed 700 rpm. 94.7% extraction of Mn was accomplished from nitric acid solutions by using Octyl Pyro Phosphoric Acid (OPPA) in kerosene at contact time for 12 min, 50%OPPA -kerosene, stirring speed 900 rpm, and organic to the aqueous phase (O/A) of 4/1. Kerosene was the most important diluting agent in extracting Mn, compared to benzene and toluene.
An investigation was conducted for the improvement of viscosity index of light lubricating oil fraction (40 stock)
obtained from vacuum distillation unit of lube oil plant of Daura Refinery, using solvent extraction process.
In this study furfural solvent was used to extract the undesirable materials which reduce the viscosity index of raw
lubricating oil fraction.
The studied effecting variables of extraction were extraction temperature range from 70 to 110°C, and solvent to oil
ratio range from 1:1 to 4:1 (wt/wt).
The n-d-M method was used for calculation of carbon distribution and structural group analysis of the raffinate
produced from furfural extraction.
Also the three component phase diagram for a mixed-ba
In this paper, a least squares group finite element method for solving coupled Burgers' problem in 2-D is presented. A fully discrete formulation of least squares finite element method is analyzed, the backward-Euler scheme for the time variable is considered, the discretization with respect to space variable is applied as biquadratic quadrangular elements with nine nodes for each element. The continuity, ellipticity, stability condition and error estimate of least squares group finite element method are proved. The theoretical results show that the error estimate of this method is . The numerical results are compared with the exact solution and other available literature when the convection-dominated case to illustrate the effic
... Show MoreExtraction and Description of Urease Enzyme Produced from Staphylococcus saprophyticus and study of its effect on kidney and bladder of white mice
New membrane electrodes for determination of ciprofloxacin hydrochloride were prepared depending on ciprofloxacin hydrochloride - phosphotungstic acid (CFH-PT) as an active material and these electrodes were made with three plasticizers: Di-octylphenylphosphonate(DOPH), Di-butyl phosphate (DBP)Tri-n-butyl phosphate(TBP), in PVC matrix. One of the ciprofloxacin electrodes was gave Nernstian slope equal to 57.21 mV/ decade for DOPH membrane with concentration range from 1.5×10-5 to1.0×10-1 M, and detection limit equal to 1.5×10-6 M .Lifetime was 93 days. Non- Nernstian responses equal to 39.40 and 30.70 mV/ decade for membranes DBP, TBP, respectively. These electrodes were gave concentration range from 1.0× 10-5 to 1.0×10-2 and from 4.0
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreOil from Brassca campestris (local variety) was extracted with hexane using Soxhlet. The extracted oil was characterized and its antimicrobial activity was determined as well. The content of extracted oil was 40% with 0.5% of volatile oil .Oil was immiscible with polar solvent such as ethanol, acetone and water, while it was easily miscible with chloroform due to its hydrophobicity. The result of organoleptic tests revealed that the oil is clear yellow in color and odorless with acceptable taste. The oil was stable at 4 -25 C? for a month. Refractive index (RI) of oil was 1.4723 with density of 0.914, [both at 4-25 C?]. Boiling point 386 C?. Infra red spectroscopy (IR) indicated the presence of different chemical groups (C=C
... Show More