This research investigates manganese (Mn) extraction from Electric Arc Furnace Steel Slag (EAFS) by using the Liquid-liquid extraction (LLE) method. The chemical analysis was done on the slag using X-ray fluorescence, X-ray diffraction, and atomic absorption spectroscopy. This work consisted of two parts: the first was an extensive study of the effect of variables that can affect the leaching process rate for Mn element from slag (reaction time, nitric acid concentration, solid to liquid ratio, and stirring speed), and the second part evaluates the extraction of Mn element from leached solution. The results showed the possibility of leaching 83.5 % of Mn element from the slag at a temperature of 25°C, nitric acid concentration 2 M, time 90 min, S / L ratio 1/100, and stirring speed 700 rpm. 94.7% extraction of Mn was accomplished from nitric acid solutions by using Octyl Pyro Phosphoric Acid (OPPA) in kerosene at contact time for 12 min, 50%OPPA -kerosene, stirring speed 900 rpm, and organic to the aqueous phase (O/A) of 4/1. Kerosene was the most important diluting agent in extracting Mn, compared to benzene and toluene.
A new, simple, sensitive and fast developed method was used for the determination of methyldopa in pure and pharmaceutical formulations by using continuous flow injection analysis. This method is based on formation a burgundy color complex between methyldopa andammonium ceric (IV) nitrate in aqueous medium using long distance chasing photometer NAG-ADF-300-2. The linear range for calibration graph was 0.05-8.3 mmol/L for cell A and 0.1-8.5 mmol/L for cell B, and LOD 952.8000 ng /200 µL for cell A and 3.3348 µg /200 µL for cell B respectively with correlation coefficient (r) 0.9994 for cell A and 0.9991 for cell B, RSD % was lower than 1 % for n=8. The results were compared with classical method UV-Spectrophotometric at λ max=280 n
... Show MoreThis study aims to investigate the adequacy of composite cellular beams with lightweight reinforced concrete deck slab as a structural unit for harmonic loaded buildings. The experimental program involved three fixed-ends supported beams throughout 2140 mm. Three concrete types were included: Normal Weight Concrete (NWC), Lightweight Aggregate Concrete (LWAC), and Lightweight Fiber Reinforced Aggregate Concrete (LWACF). The considered frequencies were (5, 10, 15, 20, 25, and 30) Hz. It was indicated that the harmonic load caused a significant influence on LWAC response (64% greater than NWC) and lattice cracks were observed, especially at 30 Hz. As for LWACF slab, no cracks appeared,
The corrosion behavior of carbon steel at different Temperatures and in water containing different sodium chloride
concentrations under 3 bar pressure has been investigated using weight loss method . The carbon steel specimens were
immersed in water containing (100,400,700,1000PPM) of NaCl solution and under temperature was increased from
(90-120ºC) under pressures of 3 bar. The results of this investigation indicated that corrosion rate increased with NaCl
concentrations and Temperature.
In this research a theoretical study has been carried out on the behavior and strength of simply supported composite beams strengthened by steel cover plate taking into consideration partial interaction of shear connectors and nonlinear behavior of the materials and shear connectors. Following the procedure that already has been adopted by Johnson (1975), the basic differential equations of equilibrium and compatibility were reduced to single differential equation in terms of interface slip between concrete slab and steel beam. Furthermore, in order to consider the nonlinear behavior of steel, concrete and shear connectors, the basic equation was rearranged so that all terms related to materials are isol
... Show MoreThe effect of time (or corrosion products formation) on corrosion rates of carbon steel pipe in aerated 0.1N NaCl
solution under turbulent flow conditions is investigated. Tests are conducted using electrochemical polarization
technique by determining the limiting current density of oxygen reduction in Reynolds number range of 15000 to 110000
and temperature range of 30 to 60oC. The effect of corrosion products formation on the friction factor is studied and
discussed. Corrosion process is analyzed as a mass transfer operation and the mass transfer theory is employed to
express the corrosion rate. The results are compared with many proposed models particularly those based on the
concept of analogy among momentum, heat,
The inhibition of mild steel corrosion in 1.0M HCl by 1-propanol and the synergistic effect of potassium iodide (KI) was investigated using weight loss and polarization techniques in the temperature range (30 ‒ 50) ̊ C. A matrix of Doelhert to three factors was used as the experimental design, adopting weight loss results as it permits the use of the response surface methodology which exploited in determination of the synergistic effect as inhibition on the mild steel. The results were confirmed using electrochemical polarization measurements. Experimental results showed that the inhibition efficiency (IE%) increases with increase in concentration of inhibitor and with increasing of temperature. The addition iodide ions t
... Show MoreIn this work the strain energy of tetrahedrane and its nitrogen substituted molecules were calculated by isodesmic reaction method according to DFT quantum chemical fashion, the used basis set was 6-31G/B3-LYP, in addition all structures were optimized by RM1 semi-empirical method. From the obtained data we estimate an empirical equation connect between strain energy of the molecule with charge functions represented by dipole moment of the molecule plus accumulated charge density involved within the tetrahedron frame plus the number of nitrogen atoms. The results indicate the charge spreading factors by polarization and processes are the most important factors in decreasing the strain energy.
Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on
... Show More