Preferred Language
Articles
/
joe-157
Evaluation of Bearing Capacity of Strip Foundation Subjected to Eccentric Inclined Loads Using Finite Element Method
...Show More Authors

In real conditions of structures, foundations like retaining walls, industrial machines and platforms in offshore areas are commonly subjected to eccentrically inclined loads. This type of loading significantly affects the overall stability of shallow foundations due to exposing the foundation into two components of loads (horizontal and vertical) and consequently reduces the bearing capacity.

Based on a numerical analysis performed using finite element software (Plaxis 3D Foundation), the behavior of model strip foundation rested on dry sand under the effect of eccentric inclined loads with different embedment ratios (D/B) ranging from (0-1) has been explored. The results display that, the bearing capacity of strip foundation is noticeably decreased with the increase of inclination angle (α) and eccentricity ratio (e/B). As well as, a reduction factor (RF) expression was appointed to measure the degree of decreasing in the bearing capacity when the model footing is subjected to eccentric inclined load. It was observed that, the (RF) decreases as the embedment ratio increases. Moreover, the test results also exhibit that, the model footing bearing capacity is reduced by about (69%) when the load inclination is varied from (0° to 20°) and the model footing is on the surface. While, the rate of decreasing in the bearing capacity was found to be (58%), for both cases of footing when they are at embedment ratios of (0.5 and 1.0). Also, a comparative study was carried out between the present results and previous experimental test results under the same conditions (soil properties and boundary condition). A good agreement was obtained between the predicted bearing capacities for the two related studies.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 01 2015
Journal Name
Journal Of Engineering
Bearing Capacity of Bored Pile Model Constructed in Gypseous Soil
...Show More Authors

Gypseous soils are distributed in many regions in the world including Iraq, which cover more than (31%) of the surface area of the country. Existence of these soils, always with high gypsum content, caused difficult problems to the buildings and strategic projects due to dissolution and leaching of the gypsum caused by the action of water flow through soil mass. For the study, the gypseous soil was brought from Bahr Al-Najaf, Al-Najaf Governorate which is located in the middle of Iraq. The model pile was embedded in gypseous soil with 42% gypsum content. Compression axial model pile load tests have been carried out for model pile embedded in gypseous soil at initial degree of saturation of (7%) before and after soil satu

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Finite Element Neural Network And Its Applications To Forward And Inverse Problems
...Show More Authors

In this paper, first we   refom1Ulated   the finite   element  model

(FEM)   into   a   neural   network   structure   using   a   simple   two   - dimensional problem. The structure of this neural network is described

, followed  by its   application   to   solving  the forward    and  inverse problems. This model is then extended to the general case and the advantages and  di sadvantages  of  this  approach  are  descri bed  along with an analysis  of  the sensi tivity   of

... Show More
View Publication Preview PDF
Publication Date
Tue May 23 2023
Journal Name
Journal Of Engineering
Numerical Simulation of Ice Melting Using the Finite Volume Method
...Show More Authors

The Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Residual strength and strengthening capacity of reinforced concrete columns subjected to fire exposure by numerical analysis
...Show More Authors
Abstract<p>This study is a numerical investigation of the performance of reinforced concrete (RC) columns after fire exposure. This study aims to investigate the effect of introducing lateral ties and using the RC jacket on improving post-fire behavior of these columns, the effect of the duration of the fire on ultimate load of columns. The analysis was performed through ABAQUS, a 3D – non-linear finite element program. 4 m tall lengthening square RC column with a cross- section of 0.4 m × 0.4 m was used as a test specimen. The RC column was reinforced by 4Ø28 mm longitudinal bars bonded by steel tie bars of Ø10 mm spaced at 400 mm. The firing temperature was increased to 60</p> ... Show More
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Apr 02 2020
Journal Name
Kufa Journal Of Engineering
PERFORMANCE OF SKIRTED CIRCULAR SHALLOW FOOTINGS RESTING ON SANDY SOIL UNDER INCLINED LOADS
...Show More Authors

Experimental tests were conducted to study the behavior of skirted foundations rested on dry medium sandy soil subjected to vertical and inclined loads. To achieve this goal, a small-scale physical model was designed and performed which contained an aluminum circular footing (100 mm) in diameter and (10 mm) in thickness and skirts with different heights, local medium poorly graded dry sand is placed in a steel soil container (2 mm) thick with internal dimensions (1000 mm x 1000 mm in cross section and 800 mm in height). The main objective of this study was to evaluate the response of skirt attached to the foundation at different skirt (L/D) ratios (0.0, 0.5, 1.0 and 1.5) and is subjected to point load at different angles of inclinat

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Journal Of Engineering
Prediction of Smear Effect on the Bearing Capacity of Driven Piles
...Show More Authors

This paper deals with prediction the effect of soil re-moulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil re-moulding due to actual pile driving. The re

... Show More
Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Prediction of Smear Effect on the Bearing Capacity of Driven Piles
...Show More Authors

This paper deals with prediction the effect of soil remoulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity
according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil remoulding due to actual pile driving. T

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Oct 06 2012
Journal Name
Journal Of Engineering
Prediction of Smear Effect on the Bearing Capacity of Driven Piles
...Show More Authors

Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Replacement of Line Loads acting on slabs to equivalent uniformly Distributed Loads
...Show More Authors

This study aims to derive a general relation between line loads that acting on two-way slab system and the equivalent uniformly distributed loads. This relation will be so useful to structural designer that are used to working with a uniformly distributed load and enable them to use the traditional methods for analysis of two-way systems (e.g. Direct Design Method). Two types of slab systems, Slab System with Beams and Flat Slab Systems, have been considered in this study to include the effect of aspect ratio and type of slab on the proposed relation. Five aspect ratios, l2/l1 of 0.5, 0.75, 1.0, 1.5 and 2.0, have been considered for both types of two-way systems.
All necessary finite element analyses have been executed with SAFE Soft

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 16 2021
Journal Name
2021 4th International Conference On Energy Conservation And Efficiency (icece)
Finite Element Modeling Of Finned Double-Pass Solar Air Heaters
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref