Car drivers hear many kinds of noise inside their vehicles' cabins, and the most annoying ones are the noise generated by tires, engines, and outside winds. Noise affects the comfort of the passengers inside the cabin, and it’s sad to say that modern cars are noisier in many kinds of noise signals due to using a lot of plastic materials in new budget cars. For expensive and luxury cars, the problem is solved by using better sound insulation materials, but for the budget ones, the approach used here is effective. It is called Active Noise Cancellation and can be done using analog or digital electronics. An operational amplifier and filters are used for the analog one, and in the digital one, signal processor chips are used. In engineering, cost reduction is a significant goal, and it is here, by using low-cost signal processor chips to achieve this, and our nominee is the Arduino processor. It is a low-cost open-source processor used in many digital control fields but not for noise cancellation, which is the concern of this paper. Considering the moderate signal processing capabilities of Arduino processors, a decision is required on what type of cabin noise signals our nominee can remove, and our selection is road noise. To a great extent, road noise relates to its quality, and the metric of concern is road roughness. In this work, three types of roughness are considered, low, medium, and high, the noise obtained from each type is analyzed, and countermeasures were applied to reduce them. Max cancellation obtained per three types, low, medium, and high roughness are 10 to 12 dB.
Keys for 22 species representing 10 genera of Thripidae were provided collection of
samples carried out during 1999-2001 in different localities in the middle of Iraq. Of them
four species are described as new to science, Frankliniella megacephala sp. nov; Retithrips
bagdadensis sp. nov; Chirothrips imperatus sp. nov; Taeniothrips tigridis sp. nov; Another
fourteen species are recorded for the first time in Iraq; Thrips meridionalis (Pri.);
Microcephalothrips abdominils (Crawford Scolothrips sexmaculatus (Pergande),);Scolothrips
pallidus (Beach); Scritothrips mangiferae Pri.; Frankliniella tritici Bagnall; Frankliniella
schultzie Trybom; Frankliniella unicolor Morgan; Retithrips aegypticus Marchal; Retithrips
java
The research seeks to identify the contemporary events that face the use of electronic payment methods to localize the salaries of state employees and its impact in enhancing the mental image of customers, and to achieve this purpose from the fact that a questionnaire was designed and distributed to an optional sample of (31) individual customers (employees) dealing With the researched private banks, it has been analyzed and reached a number of conclusions and recommendations, the most prominent of which is the lack of modernity of electronic payment methods by customers, which is reflected in the mental image of customers and the achievement of their satisfaction, in the Emiratization project for salaries needs an advanced leade
... Show MoreABSTRACT
A laboratory experiment was carried out during winter season of 2021 in the Seed Technology Laboratory- College of Agricultural Engineering Sciences/ University of Baghdad, to find out the allopathic effects of aerobic and terrestrial aqueous extracts of Artemisia vulgaris L. on the seed germination and seedling growth of linseed. A factorial experiment according to a completely randomized design (CRD)at three replicates was used; the first factor in clouded type of aqueous extract for two plant parts which were aerobic (stems and leaves) and terrestrial (root and rhizomes), while the second factor included five concentrations
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreShadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.
The penalized least square method is a popular method to deal with high dimensional data ,where the number of explanatory variables is large than the sample size . The properties of penalized least square method are given high prediction accuracy and making estimation and variables selection
At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and
... Show MoreCompressing the speech reduces the data storage requirements, leading to reducing the time of transmitting the digitized speech over long-haul links like internet. To obtain best performance in speech compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry.The MCT bases functions are derived from GHM bases function using 2D linear convolution .The fast computation algorithm methods introduced here added desirable features to the current transform. We further assess the performance of the MCT in speech compression application. This paper discusses the effect of using DWT and MCT (one and two dimension) on speech compression. DWT and MCT performances in terms of comp
... Show MoreAs we live in the era of the fourth technological revolution, it has become necessary to use artificial intelligence to generate electric power through sustainable solar energy, especially in Iraq and what it has gone through in terms of crises and what it suffers from a severe shortage of electric power because of the wars and calamities it went through. During that period of time, its impact is still evident in all aspects of daily life experienced by Iraqis because of the remnants of wars, siege, terrorism, wrong policies ruling before and later, regional interventions and their consequences, such as the destruction of electric power stations and the population increase, which must be followed by an increase in electric power stations,
... Show MoreNeural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.