Car drivers hear many kinds of noise inside their vehicles' cabins, and the most annoying ones are the noise generated by tires, engines, and outside winds. Noise affects the comfort of the passengers inside the cabin, and it’s sad to say that modern cars are noisier in many kinds of noise signals due to using a lot of plastic materials in new budget cars. For expensive and luxury cars, the problem is solved by using better sound insulation materials, but for the budget ones, the approach used here is effective. It is called Active Noise Cancellation and can be done using analog or digital electronics. An operational amplifier and filters are used for the analog one, and in the digital one, signal processor chips are used. In engineering, cost reduction is a significant goal, and it is here, by using low-cost signal processor chips to achieve this, and our nominee is the Arduino processor. It is a low-cost open-source processor used in many digital control fields but not for noise cancellation, which is the concern of this paper. Considering the moderate signal processing capabilities of Arduino processors, a decision is required on what type of cabin noise signals our nominee can remove, and our selection is road noise. To a great extent, road noise relates to its quality, and the metric of concern is road roughness. In this work, three types of roughness are considered, low, medium, and high, the noise obtained from each type is analyzed, and countermeasures were applied to reduce them. Max cancellation obtained per three types, low, medium, and high roughness are 10 to 12 dB.
Abstract
Robust controller design requires a proper definition of uncertainty bounds. These uncertainty bounds are commonly selected randomly and conservatively for certain stability, without regard for controller performance. This issue becomes critically important for multivariable systems with high nonlinearities, as in Active Magnetic Bearings (AMB) System. Flexibility and advanced learning abilities of intelligent techniques make them appealing for uncertainty estimation. The aim of this paper is to describe the development of robust H2/H∞ controller for AMB based on intelligent estimation of uncertainty bounds using Adaptive Neuro Fuzzy Inference System (ANFIS). Simulatio
... Show MoreIn this paper, several combination algorithms between Partial Update LMS (PU LMS) methods and previously proposed algorithm (New Variable Length LMS (NVLLMS)) have been developed. Then, the new sets of proposed algorithms were applied to an Acoustic Echo Cancellation system (AEC) in order to decrease the filter coefficients, decrease the convergence time, and enhance its performance in terms of Mean Square Error (MSE) and Echo Return Loss Enhancement (ERLE). These proposed algorithms will use the Echo Return Loss Enhancement (ERLE) to control the operation of filter's coefficient length variation. In addition, the time-varying step size is used.The total number of coefficients required was reduced by about 18% , 10% , 6%
... Show MoreThis paper investigates the issue of surface-type effects on traffic noise in Baghdad. Since the raw materials for both flexible and rigid paving are available from local sources, the decision on selecting the type of paving which depends on the budget of the project and the road's importance and function. Knowing that for high traffic volumes and a high percentage of heavy vehicles, rigid pavement is more suitable compared to flexible pavement. In Baghdad, some highways consist of flexible pavement and others of combined pavement (flexible segments and rigid segments), so the study of the effect of surface type on traffic noise becomes an important matter. This study selected three highways: one with flexible pavement and two with combined
... Show MoreHuman health can be negatively impacted by exposure to loud noise, which can harm the auditory system. Traffic noise is the leading cause of noise pollution. This paper studies the problem of noise pollution on the roads in Baghdad, Iraq. Due to the increase in vehicle numbers and road network modifications in Baghdad, noise levels became a serious topic to be studied. The aim of the paper was thus to study traffic noise levels and the effect of the traffic stream on noise levels and to formulate a prediction model that identified the guidelines used for designing or developing future roads in the city. Then, the noise levels were measured based on five variables: the functional classification of roads, traffic flow, vehicle speed,
... Show MoreThis paper investigates the issue of surface-type effects on traffic noise in Baghdad. Since the raw materials for both flexible and rigid paving are available from local sources, the decision on selecting the type of paving which depends on the budget of the project and the road's importance and function. Knowing that for high traffic volumes and a high percentage of heavy vehicles, rigid pavement is more suitable compared to flexible pavement. In Baghdad, some highways consist of flexible pavement and others of combined pavement (flexible segments and rigid segments), so the study of the effect of surface type on traffic noise becomes an important matter. This study selected three highways: one with flexible pavement a
... Show MoreThis paper shows an approach for Electromyography (ECG) signal processing based on linear and nonlinear adaptive filtering using Recursive Least Square (RLS) algorithm to remove two kinds of noise that affected the ECG signal. These are the High Frequency Noise (HFN) and Low Frequency Noise (LFN). Simulation is performed in Matlab. The ECG, HFN and LFN signals used in this study were downloaded from ftp://ftp.ieee.org/uploads/press/rangayyan/, and then the filtering process was obtained by using adaptive finite impulse response (FIR) that illustrated better results than infinite impulse response (IIR) filters did.
This paper presents an enhancement technique for tracking and regulating the blood glucose level for diabetic patients using an intelligent auto-tuning Proportional-Integral-Derivative PID controller. The proposed controller aims to generate the best insulin control action responsible for regulating the blood glucose level precisely, accurately, and quickly. The tuning control algorithm used the Dolphin Echolocation Optimization (DEO) algorithm for obtaining the near-optimal PID controller parameters with a proposed time domain specification performance index. The MATLAB simulation results for three different patients showed that the effectiveness and the robustness of the proposed control algorithm in terms of fast gene
... Show MoreThis review article summarizes our research focused on Cu(In, Ga)Se2 (CIGS) nanocrystals, including their synthesis and implementation as the active light absorbing material in photovoltaic devices (PVs). CIGS thin films were prepared by arrested precipitation from molecular precursors consisting of CuCl, InCl3, GaCl3 and Se metal onto Mo/soda-lime glass (SLG) substrates. We have sought to use CIGS nanocrystals synthesized with the desired stoichiometry to deposit PV device layers without high temperature processing. This approach, using spray deposition of the CIGS light absorber layers, without high temperature selenization, has enabled up to 1.5 % power conversion efficiency under AM 1.5 solar illumination. The composition and morphology
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.