This paper focused on the stone matrix asphalt (SMA) technology that was developed essentially to guard against rutting distress. For this procedure, fibers play a racy role in stabilizing and preventing the drain down problem caused by the necessity of high binder content coupled with their strengthening effect. A set of specimens with cylindrical and slab shapes were fabricated by inclusions jute, polyester, and carbon fibers. For each type, three contents of 0.25%, 0.5%, and 0.75% by weight of mixture were added by lengths of 5, 7.5, and 10 mm. The prepared mixtures were tested to gain the essential pertained parameters discriminated by the values of drain down, Marshall quotient, rut depth, and dynamic stability. It has appeared that the fibers rate of 0.5% and 7.5 mm length is much appropriate to yield the best performance of modified mixtures. At these values, carbon fibers recorded the highest increase level of rutting resistance and dynamic stability by 53% and 100%, respectively while, jute fibers exhibited the lowest improvement by only 34% and 63%, respectively; nevertheless, they produced mixtures having the lowest drain down value. Regarding the index of plastic stiffness, polyester fibers embedded mixtures occupied the first rank of increasing by 38%.
Portland cement concrete is the most commonly used construction material in the world for decades. However, the searches in concrete technology are remaining growing to meet particular properties related to its strength, durability, and sustainability issue. Thus, several types of concrete have been developed to enhance concrete performance. Most of the modern concrete types have to contain supplementary cementitious materials (SCMs) as a partial replacement of cement. These materials are either by-products of waste such as fly ash, slag, rice husk ash, and silica fume or from a geological resource like natural pozzolans and metakaolin (MK). Ideally, the utilization of SCMs will enhance the concrete performance, minimize
... Show MoreThe plant Zizyphus spina-christa grows wildly in the middle and southern of Iraq locally named Nabag. In this study the antibacterial activity of several different plant extract (alcoholic hot and cold extract 80%, aqueous hot and cold extract) was tested against some gram negative bacteria that related to Enterobacteriacea as follow; Pseudomonas aeruginosa, Escherchia coli Proteus mirabilis, Serratia mercesence,. Aeromonas sp, Klebsiella pneumoniae ,Shigella sp, Salmonella enteritidis (134), S. typhi(97), S. typhimurium (300) , S. typhi, . The results showed that efficient method of extract was alcoholic hot extract from other extract methods that are used in this study. The detection of active compound in crude extracts of the leaves show
... Show More The study was conducted to evaluate the antibacterial activity of water and alcoholic extracts (cold and hot) of plant Zingiber officinale against different types of bacteria includeing (Staphylococcus aureus ، Staphylococcus epidermis ، Escherichia coli ، Pseudomonas aeruginosa
ØŒProteus spp.and Klebsilla pneumoniae). High effect of the hot (water and alcoholic) extracts of plant Zingiber officinale was on the different types of bacteria. Investigation of presence of active compounds (Alkaloids, Glycoside, Tannins, Saponine and Resine) in this plant parts was carried out. Sensitivity test of the isolate
The parasite E.histolytica was first isolated from a stool sample, and then cultivated and maintained in vitro using Locke-egg medium (LEM) and Liver infusion agar medium (LIAM) . Then, the effect of some types of erythrocytes (human and sheep), on the growth and activity of the parasite in the two culture media was investigated. The parasite was able to ingest and lysis erythrocytes of human and sheep that were supplemented to the culture media and such manipulation was able to augment the reproduction rate of the cultivated E. histolytica, however, such consequence was media- and concentration-dependent. The reproduction rate was significantly increased (66.0, 57.5 and 58.6%, respectively) in LEM medium containing human erythrocytes ty
... Show MoreIn this work, a fiber-optic biomedical sensor was manufactured to detect hemoglobin percentages in the blood. SPR-based coreless optical fibers were developed and implemented using single and multiple optical fibers. It was also used to calculate refractive indices and concentrations of hemoglobin in blood samples. An optical fiber, with a thickness of 40 nanometers, was deposited on gold metal for the sensing area to increase the sensitivity of the sensor. The optical fiber used in this work has a diameter of 125μm, no core, and is made up of a pure silica glass rod and an acrylate coating. The length of the fiber was 4cm removed buffer and the splicing process was done. It is found in practice that when the sensitive refractive i
... Show MoreThis investigation was undertaken to evaluate the effectiveness of using Hydrated lime as a (partial substitute) by weight of filler (lime stone powder) with five consecutive percentage namely (1.0, 1.5, 2.0, 2.5, 3.0) % by means of aggregate treatment, by introducing dry lime on dry and 2–3% Saturated surface aggregate on both wearing and binder coarse. Marshall design method, indirect tensile test and permanent deformation under repeated loading of Pneumatic repeated load system at full range of temperature (20, 40, 60) C0 were examined The study revealed that the use of 2.0% and 1.5 % of dry and wet replacement extend the pavement characteristics by improving the Marshall properties and increasing the TSR%. Finally, increase permanent
... Show MoreThe rehabilitation of deteriorated pavements using Asphalt Concrete (AC) overlays consistently confronts the reflection cracking challenge, where inherent cracks and joints from an existing pavement layer are mirrored in the new overlay. To address this issue, the current study evaluates the effectiveness of Engineered Cementitious Composite (ECC) and geotextile fabric as mitigation strategies. ECC, characterized by its tensile ductility, fracture resistance, and high deformation capacity, was examined in interlayer thicknesses of 7, 12, and 17 mm. Additionally, the impact of geotextile fabric positioning at the base and at 1/3 depth of the AC specimen was explored. Utilizing the Overlay Testing Machine (OTM) for evaluations, the research d
... Show MoreThe growing demand for sustainable and high-performance asphalt binders has prompted the exploration of waste-derived modifiers. This study investigates the performance enhancement of Natural Asphalt (NA) using Sugarcane Molasses (SM) and Waste Engine Oil (WEO). The modified blends were prepared by partially replacing 50 % NA with varying proportions of SM and WEO ranging from 10 % to 40 % of the total weight of NA. Comprehensive testing was conducted, including penetration, softening point, ductility, viscosity, Bending Beam Rheometer (BBR), Multiple Stress Creep Recovery (MSCR), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM). The results demonstrated that
... Show More