This paper proposes a novel method for generating True Random Numbers (TRNs) using electromechanical switches. The proposed generator is implemented using an FPGA board. The system utilizes the phenomenon of electromechanical switch bounce to produce a randomly fluctuated signal that is used to trigger a counter to generate a binary random number. Compared to other true random number generation methods, the proposed approach features a high degree of randomness using a simple circuit that can be easily built using off-the-shelf components. The proposed system is implemented using a commercial relay circuit connected to an FPGA board that is used to process and record the generated random sequences. Applying statistical testing on the experimentally generated sequences revealed a high degree of randomness, which proves its viability to modern applications, such as cryptography and communication system simulation and modeling.
This paper proposes a new encryption method. It combines two cipher algorithms, i.e., DES and AES, to generate hybrid keys. This combination strengthens the proposed W-method by generating high randomized keys. Two points can represent the reliability of any encryption technique. Firstly, is the key generation; therefore, our approach merges 64 bits of DES with 64 bits of AES to produce 128 bits as a root key for all remaining keys that are 15. This complexity increases the level of the ciphering process. Moreover, it shifts the operation one bit only to the right. Secondly is the nature of the encryption process. It includes two keys and mixes one round of DES with one round of AES to reduce the performance time. The W-method deals with
... Show MoreWith the wide developments of computer science and applications of networks, the security of information must be increased and make it more complex. The most important issues is how to control and prevent unauthorized access to secure information, therefore this paper presents a combination of two efficient encryption algorithms to satisfy the purpose of information security by adding a new level of encryption in Rijndael-AES algorithm. This paper presents a proposed Rijndael encryption and decryption process with NTRU algorithm, Rijndael algorithm is important because of its strong encryption. The proposed updates are represented by encryption and decryption Rijndael S-Box using NTRU algorithm. These modifications enhance the degree of
... Show MoreIn this study, the fission track registration technique with the CR-39 detector are using to determination the uranium concentrations for seventeen samples of teeth distributed in four districts in Baghdad City .Five samples taken from both Al-Durra District and Al-Jadiriyia District, Four samples taken from Al-Karrda (Alaatar street) Taken four samples and three samples taken from Al-Zuafrania and by 0.5gm in weight and 1.5 mm in thickness. The uranium concentrations in teeth samples measured by using fission tracks registration in (CR-39) track detector that caused by the bombardment of (U) with thermal neutrons from (241 Am-Be) neutron source that has flux of (5 ×103 n cm-2 s-1). The concen
... Show MoreIn this research, we sought to identify the nature of the relationship between the exchange rate of the Chinese yuan and the value of Chinese exports, through the formulation of a standard model based on the model of common integration, and based on the data of the study and using the test "Angel-Granger" It reflects the relationship between the two research variables, through which the relationship between the RMB exchange rate and the value of Chinese exports was estimated during the period 1978-2017.
This study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show More