This study was done to investigate the impact of different nanoparticles on diesel fuel characteristics, Iraqi diesel fuel was supplied from al-Dura refinery and was treated to enhance performance by improving its characteristics. Two types of nanoparticles were mixed with Iraqi diesel fuel at various weight fractions of 30, 60, 90, and 120 ppm. The diesel engine was tested and run at a constant speed of 1600 rpm to examine and evaluate the engine's performance and determine emissions. In general, ZnO additives' performance analysis showed they are more efficient for diesel fuel engines than CeO. The performance of engine diesel fuel tests showed that the weight fraction of nanoparticles at 90 and 120 ppm give a similar performance, so, for economic aspects, the additives at 90 ppm of two types of nanoparticles gave good performance efficiency and the best reduction of gas emissions. The enhancement for ZnO additives is up to 34.28% compared to pure diesel fuel, while for nano CeO, the maximum enhancement is 20% compared to pure diesel fuel. The brake thermal efficiency increases with additives. The best improvements in brake thermal efficiency were 62% for ZnO and 59% for CeO, respectively, both at 120 ppm. A reduction in NOx, CO2, CO and UHC emissions was observed compared with the diesel fuel that was consumed from pure diesel fuel. The maximum reduction emissions values for NOx, CO, CO2 and un-burn hydrocarbon (UHC) were 63.77, 29.26, 56.41, and 57.37 % for ZnO, and 58.11, 37.80, 61.53, and 50.81 % for CeO additives. Therefore, it is recommended to utilize nanoparticles, especially ZnO, as a fuel additive with diesel fuel and consider them as an enhancer material to increase engine efficiency and reduce exhaust emissions.
Gas sensors based on titanium dioxide (TiO2) and zinc oxide (ZnO) nanocomposites are considered energy-saving devices that are utilized to find dangerous or harmful gases in an environment. The performance of nitrogen dioxide (NO2) gas sensors have been improved by spin-coating a TiO2 and TiO2:ZnO nanocomposite with varying concentrations (90TiO2:10ZnO, 70TiO2:30ZnO, and 50TiO2:50ZnO). To correlate structural properties with gas-sensing behavior, structural and morphological characterization has been done using FESEM, XRD, and EDX. Without any ZnO-specific crystalline phase, TiO2
... Show MoreThe thermal performance of indirect expansion solar assisted heat pump, IX-SAHP, was investigated experimentally under Iraqi climate. An Indirect-Solar Assisted Heat Pump system was designed, built, instrumented and tested. Experimental tests were conducted by varying the controlling parameters to investigate their effects on the thermal performance of the IX-SAHP such as cooling water flow rate, heating water flow rate, ambient temperature and solar radiation intensity. The investigation covered values of cooling water flow rate of (2, 3, 4, 5 l/min) and heating water flow rate of (2, 3, 4, 5 l/min) under meteorological condition of Baghdad from November 2014 to January 2015.
The results indicated that the performance of the IX-
... Show MoreBackground: The incorporation of rubber has not been entirely successful because it can have detrimental effects on the transverse Strength and hence the rigidity of the denture base. Materials and methods: Zirconium oxide nanoparticales were coated with a layer of trimethoxysilylpropylmethacrylate (TMSPM) before sonication in monomer (MMA) with the percentages 3% by weight then mixed with powder using conventional procedure.(100) samples were prepared and divided into five groups according to the test performed ,Each group consisted of 20 specimens and these were subdivided into 2 groupsGroup (A): control group (10 specimens of high impact acrylic resin without zirconium oxide) and Group (B):zirconium oxide group(10 specimens of high impac
... Show Moreفي الدراسة الحالية، تم تصنيع جسيمات ZrO2 النانوية باستخدام مستخلص نباتي مشتق من نبات Vitex agnus castus، ووسط قلوي مثل هيدروكسيد الصوديوم. تم استخدام أسلوب التخليق الحيوي لتحضير جزيئات أوكسيد الزركونيوم النانوية لهذا المشروع البحثي. تتميز هذه الطريقة عن غيرها بسبب فعاليتها من حيث التكلفة وبساطتها وقلة المخاطر المحتملة. وتم تشخيص العينات المحضرة باستخدام المجهر الإلكتروني النافذ TEM، المجهر الإلكتروني الماسح SEM،
... Show MoreWastewater recycling for non-potable uses has gained significant attention to mitigate the high pressure on freshwater resources. This requires using a sustainable technique to treat natural municipal wastewater as an alternative to conventional methods, especially in arid and semi-arid rural areas. One of the promising techniques applied to satisfy the objective of wastewater reuse is the constructed wetlands (CWs) which have been used extensively in most countries worldwide through the last decades. The present study introduces a significant review of the definition, classification, and components of CWs, identifying the mechanisms controlling the removal process within such units. Vertical, horizontal, and hybrid CWs
... Show MoreAbstract
The use of electronic valves is commonly available. yet, the most
common is the techniques of communications as prod casting transmitter that
are used by these valves in addition to their use in communication tools as far
distance telephone, electronic measuring techniques , and others.
In this study, an attempt is endeavored for improving the efficiency of the
vacuum micro- valves(GI-19b) through activating their internal surfaces by the
use of ionic pumping which is used for treating valves which are out of order
(because of sedimentation some materials and oxide on its poles). The
existence of these materials and oxide increase the sum of current leakage
moving in between. The use of ionic pumpin
Nanoparticles of humic acid and iron oxide were impregnated on the inert sand to produce sorbent for treating groundwater contained of cadmium and copper ions by technology of permeable reactive barrier (PRB). Sewage sludge was the source of the humic acid to prepare the coated sand by humic acid—iron oxide (CSHAIO) sorbent; so, this work is consistent with sustainable development. For 10 mg/L metal concentration, batch tests at speed of 200 rpm signified that the removal efficiencies are greater than 90% at sorbent dosage 0.25 g/ 50 mL, pH 6 and contact time 1 h. The kinetic data was well described by the Pseudo first-order model indicating that physicosorption is the predominant mechanism. The maximum adsorption capacities (qmax) were c
... Show MoreThe acrylic polymer composites in this study are made up of various weight ratios of cement or silica nanoparticles (1, 3, 5, and 10 wt%) using the casting method. The effects of doping ratio/type on mechanical, dielectric, thermal, and hydrophobic properties were investigated. Acrylic polymer composites containing 5 wt% cement or silica nanoparticles had the lowest abrasion wear rates and the highest shore-D hardness and impact strength. The increase in the inclusion of cement or silica nanoparticles enhanced surface roughness, water contact angle (WCA), and thermal insulation. Acrylic/cement composites demonstrated higher mechanical, electrical, and thermal insulation properties than acrylic/silica composites because of their lowe
... Show More