This study was done to investigate the impact of different nanoparticles on diesel fuel characteristics, Iraqi diesel fuel was supplied from al-Dura refinery and was treated to enhance performance by improving its characteristics. Two types of nanoparticles were mixed with Iraqi diesel fuel at various weight fractions of 30, 60, 90, and 120 ppm. The diesel engine was tested and run at a constant speed of 1600 rpm to examine and evaluate the engine's performance and determine emissions. In general, ZnO additives' performance analysis showed they are more efficient for diesel fuel engines than CeO. The performance of engine diesel fuel tests showed that the weight fraction of nanoparticles at 90 and 120 ppm give a similar performance, so, for economic aspects, the additives at 90 ppm of two types of nanoparticles gave good performance efficiency and the best reduction of gas emissions. The enhancement for ZnO additives is up to 34.28% compared to pure diesel fuel, while for nano CeO, the maximum enhancement is 20% compared to pure diesel fuel. The brake thermal efficiency increases with additives. The best improvements in brake thermal efficiency were 62% for ZnO and 59% for CeO, respectively, both at 120 ppm. A reduction in NOx, CO2, CO and UHC emissions was observed compared with the diesel fuel that was consumed from pure diesel fuel. The maximum reduction emissions values for NOx, CO, CO2 and un-burn hydrocarbon (UHC) were 63.77, 29.26, 56.41, and 57.37 % for ZnO, and 58.11, 37.80, 61.53, and 50.81 % for CeO additives. Therefore, it is recommended to utilize nanoparticles, especially ZnO, as a fuel additive with diesel fuel and consider them as an enhancer material to increase engine efficiency and reduce exhaust emissions.
This paper experimentally investigates the heating process of a hot water supply using a neural network implementation of a self-tuning PID controller on a microcontroller system. The Particle Swarm Optimization (PSO) algorithm employed in system tuning proved very effective, as it is simple and fast optimization algorithm. The PSO method for the PID parameters is executed on the Matlab platform in order to put these parameters in the real-time digital PID controller, which was experimented with in a pilot study on a microcontroller platform. Instead of the traditional phase angle power control (PAPC) method, the Cycle by Cycle Power Control (CBCPC) method is implemented because it yields better power factor and eliminates harmonics
... Show MoreThis research presents a particular designing strategy for a free form of surfaces, constructed by the lofting design method. The regarded surfaces were created by sliding a B-spline curves (profile curves), in addition to describing an automatic procedure for selective identification of sampling points in reverse engineering applications using Coordinate Measurement Machine. Two models have been implemented from (Ureol material) to represent the different cases of B-spline types to clarify its scope of application. The interior data of the desired surfaces was designed by MATLAB software, which then were transformed to UG-NX9 software for connecting the sections that were designed in MATLAB program and obtaining G-code programs for the
... Show MoreIn this work, plasma parameters such as, the electron temperature )Te(, electron density ne, plasma frequency )fp(, Debye length )λD(
and Debye number )ND), have been studied using optical emission spectroscopy technique. The spectrum of plasma with different values of energy, Pb doped CuO at different percentage (X=0.6, 0.7, 0.8) were recorded. The spectroscopic study for these mixing under vacuum with pressure down to P=2.5×10-2 mbar. The results of electron temperature for X=0.6 range (1.072-1.166) eV, for X=0.7 the Te range (1.024-0.855) eV and X=0.8 the Te is (1.033-0.921) eV. Optical properties of CuO:Pb thin films were determined through the optical transmission method using ultraviolet visible spectrophotometer within the ra
In this work, plasma parameters such as (electron temperature (Te), electron density (ne), plasma frequency (fp) and Debye length (λD)) were studied using spectral analysis techniques. The spectrum of the plasma was recorded with different energy values, SnO2 and ZnO anesthetized at a different ratio (X = 0.2, 0.4 and 0.6) were recorded. Spectral study of this mixing in the air. The results showed electron density and electron temperature increase in zinc oxide: tin oxide alloy targets. It was located that The intensity of the lines increases in different laser peak powers when the laser peak power increases and then decreases when the force continues to increase.
In this study, pure Co3O4 nano structure and doping with 4 %, and
6 % of Yttrium is successfully synthesized by hydrothermal method.
The XRD examination, optical, electrical and photo sensing
properties have been studied for pure and doped Co3O4 thin films.
The X-ray diffraction (XRD) analysis shows that all films are
polycrystalline in nature, having cubic structure.
The optical properties indication that the optical energy gap follows
allowed direct electronic transition calculated using Tauc equation
and it increases for doped Co3O4. The photo sensing properties of
thin films are studied as a function of time at different wavelengths to
find the sensitivity for these lights.
High photo sensitivity dope
Acute respiratory distress syndrome (ARDS) is defined as a type of respiratory failure that is caused by a variety of insults such as pneumonia, sepsis, trauma and certain viral infections. In this study, we investigated the effect of an endocannabinoid, anandamide (AEA), on ARDS induced in the mouse by
Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of
... Show MoreThe research aims to identify the most important variables affecting shooting from jumping high and compare them for the two foot the weak and strong, where the researchers adopted the descriptive method, and the sample was chosen by the intentional method, which consists of (4) players from the Iraqi Sports Army Club, where these variables were studied and their impact on The accuracy of aiming at the two men, and the researchers concluded that most of the players have more accuracy in aiming at the strong leg than at the weak leg, which leads to the loss of many real opportunities during the match because of the players changing the situation or wasting the available opportunity when the position of correction is an opportunity for the w
... Show More