This study was done to investigate the impact of different nanoparticles on diesel fuel characteristics, Iraqi diesel fuel was supplied from al-Dura refinery and was treated to enhance performance by improving its characteristics. Two types of nanoparticles were mixed with Iraqi diesel fuel at various weight fractions of 30, 60, 90, and 120 ppm. The diesel engine was tested and run at a constant speed of 1600 rpm to examine and evaluate the engine's performance and determine emissions. In general, ZnO additives' performance analysis showed they are more efficient for diesel fuel engines than CeO. The performance of engine diesel fuel tests showed that the weight fraction of nanoparticles at 90 and 120 ppm give a similar performance, so, for economic aspects, the additives at 90 ppm of two types of nanoparticles gave good performance efficiency and the best reduction of gas emissions. The enhancement for ZnO additives is up to 34.28% compared to pure diesel fuel, while for nano CeO, the maximum enhancement is 20% compared to pure diesel fuel. The brake thermal efficiency increases with additives. The best improvements in brake thermal efficiency were 62% for ZnO and 59% for CeO, respectively, both at 120 ppm. A reduction in NOx, CO2, CO and UHC emissions was observed compared with the diesel fuel that was consumed from pure diesel fuel. The maximum reduction emissions values for NOx, CO, CO2 and un-burn hydrocarbon (UHC) were 63.77, 29.26, 56.41, and 57.37 % for ZnO, and 58.11, 37.80, 61.53, and 50.81 % for CeO additives. Therefore, it is recommended to utilize nanoparticles, especially ZnO, as a fuel additive with diesel fuel and consider them as an enhancer material to increase engine efficiency and reduce exhaust emissions.
Simple, sensitive and economical spectrophotometric methods have been developed for the determination of cefixime in pure form. This method is based on the reaction of cefixime as n-electron donor with chloranil to give highly colored complex in ethanol which is absorb maximally at 550 nm. Beer's law is obeyed in the concentration ranges 5-250 µg ml-1 with high apparent molar absorptivities of 1.52×103 L.mole-1. cm-1.
Pesticide biodegradation can be accomplished by the technique of bioremediation, which makes use of microorganisms’ ability to degrade pesticide residues. This study aimed to separate and identify imidacloprid-biodegradable from botanical fields soil of greenhouses in the Plant Protection Directorate /Ministry of Agriculture in Baghdad, which has been using imidacloprid pesticides for many years. Using high-performance liquid chromatography, residual imidacloprid concentrations in MSM medium at a concentration of 25 mg/L after 21 days were measured to identify the best degrading bacterial isolates. Isolate No.37 the best bacterial isolate was able to degrade 63% of imidacloprid. was
Leishmaniasis is endemic ofIraq in both cutaneous and visceral form. The available tools for diagnosis and detection of Leishmaniaare nonspecific and may interfere with other species. In this study, Polymerase Chain Reaction (PCR) has been used to identify Iraqi isolate of visceral leishmaniasis (MHOM/ IQ/2005/MRU15) which a previously diagnosed by classical serological tests. PCR amplificationwas carried out using species-specific primers of Leishmania donovani. Four primer pairs of mini-circle DNA and ITS-1 were used.13A/13B, which is used to identify Leishmaniaas a genus, NM12, LITSR/L5.8S and BHUL18S, were used to detect the sub species of L. donovani.The result ofPCR
... Show Moreِabstract:In this research we prepared nanofibers by electrospinning from poly (Vinyl Alcohol) /TiO2. The spectrum of the solution (Emission) was studied and found to be at 772 nm, several process parameters were such as concentration of TiO2 , and the effect of distance from nozzle tip to the grounded collector (gap distance). The result of the lower concentration of, the smaller the diameter of nanofiber is. Increasing the gap distance will affect nanofibers diameter.
The biochar prepared from sawdust raw material was applied in this study for the treatment of wastewater polluted with methyl orange dye. The effect of pH (2-11), initial concertation (50-250 mg/L) and time were studied. The isotherm of Langmuir, Frendluch and temkin models studied. The Langmuir model was the best to explain the adsorption process, maximum uptake was 136.67 mg/g at 25Co of methyl orange dye. Equilibrium reached after four hours of contact for most adsorbents.The values of thermodynamic parameters ∆G were negative at various temperatures, so the process spontaneous, while ∆H values were 16683 j/mol and ∆S values was 60.82 j/mol.k.
In this research we prepared nanofibers by electrospinning from
poly (Vinyl Alcohol) /TiO2. The spectrum of the solution (Emission)
was studied and found to be at 772 nm, several process parameters
were such as concentration of TiO2 , and the effect of distance from
nozzle tip to the grounded collector (gap distance). The result of the
lower concentration of, the smaller the diameter of nanofiber is.
Increasing the gap distance will affect nanofibers diameter