Preferred Language
Articles
/
joe-154
Behavior of Reinforced Concrete Deep Beams Strengthened with Carbon Fiber Reinforced Polymer Strips
...Show More Authors

This research is concerned to investigate the behavior of reinforced concrete (RC) deep beams strengthened with carbon fiber reinforced polymer (CFRP) strips. The experimental part of this research is carried out by testing seven RC deep beams having the same dimensions and steel reinforcement which have been divided into two groups according to the strengthening schemes. Group one was consisted of three deep beams strengthened with vertical U-wrapped CFRP strips. While, Group two was consisted of three deep beams strengthened with inclined CFRP strips oriented by 45o with the longitudinal axis of the beam. The remaining beam is kept unstrengthening as a reference beam. For each group, the variable considered was the center to center spacing between strips (orthogonal spacing) which are (100 mm, 125 mm and 150 mm). Based on the experimental results it is found that the strengthening deep beams with CFRP strips by the two strengthening schemes, the mid-span deflection was decreased and both first cracking and ultimate loads capacities were increased compared to reference deep beam. For beams having the same spacing between strips, the enhancement occurred by using vertical U- wrapped scheme was somewhat better than using inclined scheme but it needs to use additional numbers of CFRP strips. The percentages increase in first cracking and ultimate loads were (50.0%, 46.0% and 20.5%) and (14.6%, 13.3% and 12.2%) respectively for beams strengthened with vertical U-wrapped scheme. While these percentages were changed to (36.5%, 18.0% and 12.5%) and (12.5%, 10.4% and 8.6%) for beams strengthened with inclined scheme. These results were obtained for center to center spacing between strips of (100 mm, 125 mm and 150 mm) respectively. The analytical part of this research was also adopted using the ACI 440 Code provisions to calculate the additional shear resistance carried by the CFRP strips. Good agreement was obtained between the experimental and analytical results.  

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Bearing Capacity of Shallow Footing on Compacted Filling Dune Sand Over Reinforced Gypseous Soil
...Show More Authors

Existence of these soils, sometimes with high gypsum content, caused difficult problems to the buildings and strategic projects due to dissolution and leaching of gypsum by the action of waterflow through soil mass. In this research, a new technique is adopted to investigate the performance of replacement and geosynthetic reinforcement materials to improve the gypseous soil behavior through experimential set up manufactured loaclally specially for this work. A series of tests were carried out using steel container (600*600*500) mm. A square footing (100*100) mm was placed at the center of the top surface of the bed soil. The results showed that the most effective thickness for the dune sand layer with geotextile at the interface, within

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Wed May 10 2023
Journal Name
Biomass Conversion And Biorefinery
Lactic acid-based deep eutectic solvents and activated carbon for soap removal from crude biodiesel
...Show More Authors

View Publication
Scopus (9)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2008
Journal Name
J Bagh College Of Dentistry
Assessment of consistency and compressive strength of glass ionomer reinforced by different amount of hydroxyapatite
...Show More Authors

Background: Glass ionomers have good biocompatibility and the ability to adhere to both enamel and dentin. However, they have certain demerits, mainly low tensile and compressive strengths. Therefore, this study was done to assess consistency and compressive strength of glass ionomer reinforced by different amount of hydroxyapatite. Materials and Methods: In this study hydroxyapatite materials were added to glass ionomer cement at different ratios, 10%, 15%, 20%, 25% and 30% (by weight). The standard consistency test described in America dental association (ADA) specification No. 8 was used, so that all new base materials could be conveniently mixed and the results would be of comparable value and the compressive strength test described by

... Show More
View Publication Preview PDF
Publication Date
Thu Aug 01 2019
Journal Name
International Journal Of Geomate
SERVICEABILITY AND DUCTILITY OF PARTIALLY PRESTRESSED CONCRETE BEAMS UNDER LIMITED CYCLES OF REPEATED LOADING
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
The effect of using polyolefin fiber on some properties of slurry-infiltrated fibrous concrete
...Show More Authors
Abstract<p>Slurry-infiltrated fibrous concrete (SIFCON) is a special type of concrete that has great strength, as well as high ductility. However, the unit weight is high, which exceeds the unit weight of fiber-reinforced concrete, because of the high fiber content. This research aims to verify the compressive and flexural strength, as well as the density of SIFCON when using two different fibers (steel and polyolefin). Sometimes mono type of fiber steel or polyolefin, sometimes by hybridizing two types of fiber steel + polyplefin. Volume fraction (6% for all species) was used. Hook-end steel fiber and polyolefin fiber are used. With hybridization, a total volume fraction of 6% was used, which </p> ... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Sun Mar 31 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Behavior of Plain Concrete Beam Analyzed Using Extended Finite Element Method
...Show More Authors

In this study, plain concrete simply supported beams subjected to two points loading were analyzed for the flexure. The numerical model of the beam was constructed in the meso-scale representation of concrete as a two phasic material (aggregate, and mortar). The fracture process of the concrete beams under loading was investigated in the laboratory as well as by the numerical models. The Extended Finite Element Method (XFEM) was employed for the treatment of the discontinuities that appeared during the fracture process in concrete. Finite element method with the feature standard/explicitlywas utilized for the numerical analysis. Aggregate particles were assumedof elliptic shape. Other properties such as grading and sizes of the aggr

... Show More
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Theoretical Investigations on the Structural Behavior of Biaxial Hollow Concrete Slabs
...Show More Authors

This paper presents a numerical analysis using ANSYS finite element program to simulate the reinforced concrete slabs with spherical voids. Six full-scale one way bubbled slabs of (3000mm) length with rectangular cross-sectional area of (460mm) width and (150mm) depth are tested as simply supported under two-concentrated load. The results of the finite element model are presented and compared with the experimental data of the tested slabs. Material nonlinearities due to cracking and crushing of concrete and yielding of reinforcement are considered. The general behavior of the finite element models represented by the load-deflection curves at midspan, crack pattern, ultimate load, load-concrete strain curves and failure m

... Show More
View Publication Preview PDF
Publication Date
Fri Nov 01 2019
Journal Name
International Journal Of Engineering
Structural Behavior of Axially Loaded Composite Concrete-steel Plate Shear Walls
...Show More Authors

Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Composites Science
Sawdust-Based Concrete Composite-Filled Steel Tube Beams: An Experimental and Analytical Investigation
...Show More Authors

Incorporating waste byproducts into concrete is an innovative and promising way to minimize the environmental impact of waste material while maintaining and/or improving concrete’s mechanical characteristics and strength. The proper application of sawdust as a pozzolan in the building industry remains a significant challenge. Consequently, this study conducted an experimental evaluation of sawdust as a fill material. In particular, sawdust as a fine aggregate in concrete offers a realistic structural and economical possibility for the construction of lightweight structural systems. Failure under four-point loads was investigated for six concrete-filled steel tube (CFST) specimens. The results indicated that recycled lightweight co

... Show More
View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Preparation Adhesive Material Reinforced of Graphite Particles and Study Electrical and Mechanical and Thermal Properties
...Show More Authors

The physical, mechanical, electrical and thermal properties containing (Viscosity, curing, adhesion force, Tensile strength, Lap shear strength, Resistively, Electrical conductivity and flammability) of adhesive material that prepared from Nitrocellulose reinforced with graphite particles and aluminum streat. A comparison is made between the properties of adhesive material with varying percentage of graphite powder (0%, 25%, 30%, 35%, 40%) to find out the effect of reinforcement on the adhesive material. The ability of property an electrical was studied through the measurement of conductivity a function of temperature varying. The results of comparison have clearly shown that the increasing of conten

... Show More
View Publication Preview PDF
Crossref