Preferred Language
Articles
/
joe-1529
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Vector Machine, Naïve Bayes, Decision Tree, Random Forest, Stochastic Gradient Descent, Gradient Boosting and Ada Boosting classifiers were designed. Performance-wise analysis using Confusion Matrix metric carried out and comparisons between the classifiers were a due. As a case study Information Gain, Pearson and F-test feature selection techniques were used and the obtained results compared to models that use all the features. One unique outcome is that the Random Forest classifier achieves the best performance with an accuracy of 99.96% and an error margin of 0.038%, which supersedes other classifiers. Using 80% reduction in features and parameters extraction from the packet header rather than the workload, a big performance advantage is achieved, especially in online environments.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jul 02 2013
Journal Name
Journal Of Baghdad College Of Dentistry
Local Drug Delivery Systems for Treating Periodontal Diseases: A Review of Literature
...Show More Authors

Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Block Method for SolvingState-Space Equations of Linear Continuous-Time Control Systems
...Show More Authors

This paper presents a newly developed method with new algorithms to find the numerical solution of nth-order state-space equations (SSE) of linear continuous-time control system by using block method. The algorithms have been written in Matlab language. The state-space equation is the modern representation to the analysis of continuous-time system. It was treated numerically to the single-input-single-output (SISO) systems as well as multiple-input-multiple-output (MIMO) systems by using fourth-order-six-steps block method. We show that it is possible to find the output values of the state-space method using block method. Comparison between the numerical and exact results has been given for some numerical examples for solving different type

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Design of New Hybrid Neural Structure for Modeling and Controlling Nonlinear Systems
...Show More Authors

This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 24 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Local drug delivery systems for treating periodontal diseases (A review of literature)
...Show More Authors

In this review of literature, the light will be concentrated on the local drugs delivery systems for treating the periodontal diseases. Principles, types, advantages and indications of each type will be discussed in this paper.

View Publication Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Engineering
Controlling the Salt Wedge Intrusion in Shatt Al-Arab River by a Barrage
...Show More Authors

Shatt Al-Arab River in Al Basrah, Iraq, has recently recorded massive levels of TDS values (Total Dissolved Solids) in the water as a result of reduced fresh water discharge from sources, causing the river to become salinized due to salt wedge intrusion. Therefore, a block dam in the south reach is required to salt intrusion prevention. The main objective of this research is to simulate the hydraulic impact of a suggested barrage in Ras Al Besha on the Shatt Al-Arab River. The HEC-RAS (5.0.7) model was used to develop a one-dimensional unsteady model to gaining an understanding of the proposed barrage's influence on river behaviour. The daily discharges of the Tigris River provided as the upstream boundary conditions, wh

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Generative Adversarial Network for Imitation Learning from Single Demonstration
...Show More Authors

Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sat Mar 01 2025
Journal Name
Al-khwarizmi Engineering Journal
Deep-Learning-Based Mobile Application for Detecting COVID-19
...Show More Authors

Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated

... Show More
View Publication
Scopus Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Practical Study for the Properties of Hueckel Edge Detection Operator
...Show More Authors

View Publication
Crossref (4)
Crossref
Publication Date
Sat Aug 01 2015
Journal Name
2015 37th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Tsallis entropy as a biomarker for detection of Alzheimer's disease
...Show More Authors

View Publication
Scopus (33)
Crossref (21)
Scopus Crossref
Publication Date
Thu Apr 30 2015
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
Detection of Commercial Cheating for Some Kinds of Local Markets retailed Medicinal Oils: Detection of Commercial Cheating for Some Kinds of Local Markets retailed Medicinal Oils
...Show More Authors

The aims of this study are to explore the commercial artifacts in the following three kinds of vegetables oils, Nigella Sativa, Trigonella foenum-graecum Linn,and Zingiber officinale. These oils have been very popular medicinal plants which are commonly used in traditional medicine .These commercial oils have been compared with the extracts of these plants.
The physical properties of extracts and commercial oils of these plants have been stuied. We observed that the refractive index of the plants matches and non-significant, while specific gravity of Nigella Sativa has similar specific gravity in both extracts and commercial oil in contrast with Trigonella foenum Linn,and Zingiber officinale and we found significant difference (P&lt

... Show More
View Publication Preview PDF