In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Vector Machine, Naïve Bayes, Decision Tree, Random Forest, Stochastic Gradient Descent, Gradient Boosting and Ada Boosting classifiers were designed. Performance-wise analysis using Confusion Matrix metric carried out and comparisons between the classifiers were a due. As a case study Information Gain, Pearson and F-test feature selection techniques were used and the obtained results compared to models that use all the features. One unique outcome is that the Random Forest classifier achieves the best performance with an accuracy of 99.96% and an error margin of 0.038%, which supersedes other classifiers. Using 80% reduction in features and parameters extraction from the packet header rather than the workload, a big performance advantage is achieved, especially in online environments.
Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show MoreThis valve is intended for use in valves for steering movement, using the qualities of the Magneto-rheological (MR) fluid to regulate the fluid, direct contact without the utilization of moving parts like a spool, a connection between electric flux, and fluid power was made, The simulation was done to employ the" finite element method of magnetism (FEMM)" to arrive at the best design. This software is used for magnetic resonance valve finite element analysis. The valve's best performance was obtained by using a closed directional control valve in the normal state normally closed (NC) MR valve, with simulation results revealing the optimum magnetic flux density in the absence of a current and the shedding condition, as well as the optimum
... Show MoreThis study aims at examining and confirming the patterns of phenetic relationships and the levels of variations within and among the species of Lotus L., 1753 in Egypt by using morphometric analysis techniques. We have evaluated 24 morphological characters from about 300 herbarium specimens representing 19 species of Lotus that are currently recognized. Based on numerical analyses of macromorphological characters (cluster analysis, principal coordinate analysis and principal component analysis), 19 species of Lotus were recognized from Egypt. These species were clustered in six species-specific groups: (I) Lotus halophilus Boiss. & Spruner, L. angustissimus L., L. glinoides Delile and L. schimperi Steud. ex Boiss., (II) Lotus glaber
... Show MoreThis research presents a method of using MATLAB in analyzing a nonhomogeneous soil (Gibson-type) by
estimating the displacements and stresses under the strip footing during applied incremental loading
sequences. This paper presents a two-dimensional finite element method. In this method, the soil is divided into a number of triangle elements. A model soil (Gibson-type) with linearly increasing modulus of elasticity with depth is presented. The influences of modulus of elasticity, incremental loading, width of footing, and depth of footing are considered in this paper. The results are compared with authors' conclusions of previous studies.
This research examines the quantitative analysis to assess the efficiency of the transport network in Sadr City, where the study area suffers from a large traffic movement for the variability of traffic flow and intensity at peak hours as a result of inside traffic and outside of it, especially in the neighborhoods of population with economic concentration. &n
... Show MoreA partial temporary immunity SIR epidemic model involv nonlinear treatment rate is proposed and studied. The basic reproduction number is determined. The local and global stability of all equilibria of the model are analyzed. The conditions for occurrence of local bifurcation in the proposed epidemic model are established. Finally, numerical simulation is used to confirm our obtained analytical results and specify the control set of parameters that affect the dynamics of the model.
This paper presents a numerical simulation for the combined effect of surface roughness and non-Newtonian behavior of the lubricant on the performance of misaligned journal bearing. The modified Reynolds equation to include the effect of non-Newtonian lubricant and bearing surface roughness has been formulated. The model accounts for the lubricant viscosity dependence on temperature and shear rate. In order to make a complete thermo-hydrodynamic analysis (THD) of rough surface misaligned journal bearing lubricated with non-Newtonian lubricant, the modified Reynolds equation coupled with the energy, heat conduction equations, the equation related the viscosity and temperature with appropriate boundary conditions have been solved simultane
... Show More