Preferred Language
Articles
/
joe-1529
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Vector Machine, Naïve Bayes, Decision Tree, Random Forest, Stochastic Gradient Descent, Gradient Boosting and Ada Boosting classifiers were designed. Performance-wise analysis using Confusion Matrix metric carried out and comparisons between the classifiers were a due. As a case study Information Gain, Pearson and F-test feature selection techniques were used and the obtained results compared to models that use all the features. One unique outcome is that the Random Forest classifier achieves the best performance with an accuracy of 99.96% and an error margin of 0.038%, which supersedes other classifiers. Using 80% reduction in features and parameters extraction from the packet header rather than the workload, a big performance advantage is achieved, especially in online environments.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Aug 23 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Face mask detection based on algorithm YOLOv5s
...Show More Authors

Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on

... Show More
Publication Date
Tue Dec 07 2021
Journal Name
2021 14th International Conference On Developments In Esystems Engineering (dese)
Object Detection and Distance Measurement Using AI
...Show More Authors

View Publication
Scopus (29)
Crossref (24)
Scopus Clarivate Crossref
Publication Date
Sun Feb 02 2025
Journal Name
Engineering, Technology & Applied Science Research
Automated Glaucoma Detection Techniques: A Literature Review
...Show More Authors

Significant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Matec Web Of Conferences
Assessing the performance of commercial Agisoft PhotoScan software to deliver reliable data for accurate3D modelling
...Show More Authors

3D models delivered from digital photogrammetric techniques have massively increased and developed to meet the requirements of many applications. The reliability of these models is basically dependent on the data processing cycle and the adopted tool solution in addition to data quality. Agisoft PhotoScan is a professional image-based 3D modelling software, which seeks to create orderly, precise n 3D content from fixed images. It works with arbitrary images those qualified in both controlled and uncontrolled conditions. Following the recommendations of many users all around the globe, Agisoft PhotoScan, has become an important source to generate precise 3D data for different applications. How reliable is this data for accurate 3D mo

... Show More
View Publication
Scopus (21)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Integration The Cost Techniques with Balanced Scorecard for The Purposes of Measuring and Evaluating Performance
...Show More Authors

The effective application of the method of measuring and evaluating performance according to the Balanced  Scorecard the need for an information system a comprehensive and integrated for internal and external environment, Which requires the need to develop accounting information system in general and cost management information systems to suit the particular requirements of the environment in terms of the development of modern methods of measurement to include the use of some methods that have proven effective in measuring and evaluating performance.

The research problem in need of management to develop methods of measuring and evaluating performance through the use of both financial measures and non

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 29 2024
Journal Name
Iraqi Journal Of Science
Evaluating the Performance and Behavior of CNN, LSTM, and GRU for Classification and Prediction Tasks
...Show More Authors

     Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod

... Show More
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Mon May 01 2023
Journal Name
Ain Shams Engineering Journal
Neural network modeling of rutting performance for sustainable asphalt mixtures modified by industrial waste alumina
...Show More Authors

Scopus (18)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Sun Feb 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
effect work stress in performance of employees In The general company for vegetable oil industry
...Show More Authors

This research theme of the pressures of work , which is one of the important topics in order to recognize the reality of( influencing the pressures of work in the performance of employees in the General Company for Vegetable Oil Industry in Baghdad )through the statement of the existence of the correlation and influence whether or not the statement of the strength of this relationship and its impact in the case of its existence has been provided as part of my Search for variables and their removal in front of the Sub- scientific aspect has been the distribution of the questionnaire on a sample of( 62) people working in the company Mint distributors on several sections where.

Formed resolution of two sets

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Improve the Performance of PID Controller by Two Algorithms for Controlling the DC Servo Motor
...Show More Authors

The paper uses the Direct Synthesis (DS) method for tuning the Proportional Integral Derivative (PID) controller for controlling the DC servo motor. Two algorithms are presented for enhancing the performance of the suggested PID controller. These algorithms are Back-Propagation Neural Network and Particle Swarm Optimization (PSO). The performance and characteristics of DC servo motor are explained. The simulation results that obtained by using Matlab program show that the steady state error is eliminated with shorter adjusted time when using these algorithms with PID controller. A comparative between the two algorithms are described in this paper to show their effectiveness, which is found that the PSO algorithm gives be

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Fast lightweight encryption device based on LFSR technique for increasing the speed of LED performance
...Show More Authors

LED is an ultra-lightweight block cipher that is mainly used in devices with limited resources. Currently, the software and hardware structure of this cipher utilize a complex logic operation to generate a sequence of random numbers called round constant and this causes the algorithm to slow down and record low throughput. To improve the speed and throughput of the original algorithm, the Fast Lightweight Encryption Device (FLED) has been proposed in this paper. The key size of the currently existing LED algorithm is in 64-bit & 128-bit but this article focused mainly on the 64-bit key (block size=64-bit). In the proposed FLED design, complex operations have been replaced by LFSR left feedback technology to make the algorithm perform more e

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref