The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial voids ratio. Multi-layer perceptron training by the backpropagation algorithm was used in creating the network. It was found that both models can predict shear strength parameters for gypseous soils with good reliability. Sensitivity analysis of the first model indicated that dry unit weight and plasticity index have the most significant effect on the predicted cohesion. While in the second model, the results indicated that the gypsum content and plasticity index have the most significant effect on the predicted angle of internal friction.
This study aims to investigate the effect of changing skins material on the strength of sandwich plates with circular hole when subjected to mechanical loads. Theoretical, numerical and experimental analyses are done for sandwich plates with hole and with two face sheet materials. Theoretical analysis is performed by using sandwich plate theory which depends on the first order shear deformation theory for plates subjected to tension and bending separately. Finite element method was used to analyse numerically all cases by ANSYS program.
The sandwich plates were investigated experimentally under bending and buckling load separately. The relationship between stresses and the ratio of hole diameter to plate width (d/b) are built, by
... Show MoreIn this work polymeric composites were done from unsaturated polyester as a matrix reinforced with glass fiber type (E-glass) with two different volume fraction 20% & 40%. Fatigue tests showed that the number of fatigue cycles to failure limit for samples reinforced with uniform (woven Roving 0-90°) E-glass fiber and random (continuous fibers) with volume fraction 40% more than that for the same samples with volume fraction 20%. Also the fatigue results showed that the uniform samples failed with fatigue cycles more than that of random.
Abstract
A surface fitting model is developed based on calorimeter data for two famous brands of household compressors. Correlation equations of ten coefficient polynomials were found as a function of refrigerant saturating and evaporating temperatures in range of (-35℃ to -10℃) using Matlab software for cooling capacity, power consumption, and refrigerant mass flow rate.
Additional correlations equations for these variables as a quick choice selection for a proper compressor use at ASHRAE standard that cover a range of swept volume range (2.24-11.15) cm3.
The result indicated that these surface fitting models are accurate with in ± 15% for 72 compressors model of cooling cap
... Show MoreBACKGROUND: Preterm labour is a major cause of perinatal morbidity and mortality, so it is important to predict preterm delivery using the clinical examination of the cervix and uterine contraction frequency. New markers for the prediction of preterm birth have been developed such as transvaginal ultrasound measurement of cervical length as this method is widely available. OBJECTIVE: To determine, whether transvaginal cervical length measurement predicts imminent preterm delivery better than digital cervical length measurement in women presented with preterm labour and intact membranes. PATIENTS AND METHODS: Two hundred women presented with preterm labour between 24 and 36+6 weeks of gestation were included in this study. All women subjecte
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreBack ground: Glass ionomer materials lack resistance to wear and pressure and are susceptible to moisture during the initial stages of setting and dehydration. So this study was done to assess diametral tensile strength and microhardness of glass ionomer reinforced by different amounts of hydroxyapatite. Materials and methods: In this study a hydroxyapatite material was added to glass monomer cement at different ratios: 10%, 15%, 20%, 25% and 30% (by weight). The diametral tensile strength test described by the British standard specification for zinc polycarboxylate cement was used in this study and the microhardness test was performed using Vickers microhardness testing machine and the microhardness values were calculated and statistical c
... Show MoreBackground: This in vitro study was carried out to investigate the effect of post space regions (coronal, middle and apical), the effect of post types ( Manually Milled Zirconia post, Prefabricated Fiber post, prefabricated Zirconia post) and the type of cement used (GIC, self-adhesive resin cement) on the bond strength between the posts and root dentin by using push-out test. Material and methods: Forty eight mandibular premolars extracted for orthodontic reasons (single rooted) were instrumented with ProTaper system (hand use) and obturated with gutta percha for ProTaper using AH26® root canal sealer following the manufacturer instructions. After 24 hours, post space was prepared using Zirix and Glassix drills no.3 creating 8 mm dept
... Show MoreThe aim of this paper is to design feed forward neural network to determine the effects of
cold pills and cascades from simulation the problem to system of first order initial value
problem. This problem is typical of the many models of the passage of medication throughout
the body. Designer model is an important part of the process by which dosage levels are set.
A critical factor is the need to keep the levels of medication high enough to be effective, but
not so high that they are dangerous.