The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial voids ratio. Multi-layer perceptron training by the backpropagation algorithm was used in creating the network. It was found that both models can predict shear strength parameters for gypseous soils with good reliability. Sensitivity analysis of the first model indicated that dry unit weight and plasticity index have the most significant effect on the predicted cohesion. While in the second model, the results indicated that the gypsum content and plasticity index have the most significant effect on the predicted angle of internal friction.
This study focuses on how tax administrations in Iraq use Artificial Intelligence (AI) techniques to monitor tax evasion for individuals and companies to achieve Tax Compliance (TC). AI was measured through four dimensions: Advanced Data Analytics Techniques (ADAT), Explainable AI (EAI), Machine learning (ML), and Robotic Process Automation (RPA). At the same time, TC was measured through registration, accounting, and tax payment stages. We relied on the questionnaire form to measure the variables. A sample of employees in the General Tax Authority in Iraq was selected, and a questionnaire was distributed to 132 people. The results indicated that the dimensions of AI affect achieving TC at all stages. This study provides evidence of using A
... Show MoreThis study aims to reveal the role of one of the artificial intelligence (AI) techniques, “ChatGPT,” in improving the educational process by following it as a teaching method for the subject of automatic analysis for students of the Chemistry Department and the subject of computer security for students of the Computer Science Department, from the fourth stage at the College of Education for Pure Science (Ibn Al-Haitham), and its impact on their computational thinking to have a good educational environment. The experimental approach was used, and the research samples were chosen intentionally by the research community. Research tools were prepared, which included a scale for CT that included 12 items and the achievement test in b
... Show MoreThe study explored applications of artificial intelligence and its dialectical relationship with international human rights law of individuals, which requires assessing the effects of this technology on human rights and freedoms. The problem of privacy of humanity, as AI technologies can control human rights and freedoms, while monitoring potential violations in this context. The study use of documentary research and qualitative lens to analyze the data. In conclusion, unawareness of the use of AI may impose significant hurdles on future generations and may infringe on human rights across all sectors of society. The government should mandate obligations for artificial intelligence businesses concerning education, health, human right
... Show MoreFor the duration of the last few many years many improvement in computer technology, software program programming and application production had been followed with the aid of diverse engineering disciplines. Those trends are on the whole focusing on synthetic intelligence strategies. Therefore, a number of definitions are supplied, which recognition at the concept of artificial intelligence from exclusive viewpoints. This paper shows current applications of artificial intelligence (AI) that facilitate cost management in civil engineering tasks. An evaluation of the artificial intelligence in its precise partial branches is supplied. These branches or strategies contributed to the creation of a sizable group of fashions s
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show More
Abstract
Friction stir welding is a relatively new joining process, which involves the joining of metals without fusion or filler materials. In this study, the effect of welding parameters on the mechanical properties of aluminum alloys AA2024-T351 joints produced by FSW was investigated.
Different ranges of welding parameters, as input factors, such as welding speed (6 - 34 mm/min) and rotational speed (725 - 1235 rpm) were used to obtain their influences on the main responses, in terms of elongation, tensile strength, and maximum bending force. Experimental measurements of main responses were taken and analyzed using DESIGN EXPERT 8 experimental design software which was used to develop t
... Show MoreIn this work, we studied the effect of power variation on inductively coupled plasma parameters using numerical simulation. Different values were used for input power (750 W-1500 W), gas temperature 300K, gas pressure (0.02torr), 5 tourns of the copper coil and the plasma was produced at radio frequency (RF) 13.56 MHZ on the coil above the quartz chamber. For the previous purpose, a computer simulation in two dimensions axisymmetric, based on finite element method, was implemented for argon plasma. Based on the results we were able to obtain plasma with a higher density, which was represented by obtaining the plasma parameters (electron density, electric potential, total power, number density of argon ions, el
... Show MoreThe activation energy and optical band gap of different regions (p-type) polysilicon have been measured. Both microscopic studies and current-voltage characteristics of diodes prepared on different surface regions were carried out. Comparison of diodes parameters and microscopic studies indicate that the type of angles between boundaries has a significant effect on diodes parameters while the boundary lengths per unit area has less effect. The mechanism of Al-interaction with grain boundaries and their intersecting points at different temperature were also studies. The X-ray fluorescence spectrometry has been used for detection of diffused A1%.