The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial voids ratio. Multi-layer perceptron training by the backpropagation algorithm was used in creating the network. It was found that both models can predict shear strength parameters for gypseous soils with good reliability. Sensitivity analysis of the first model indicated that dry unit weight and plasticity index have the most significant effect on the predicted cohesion. While in the second model, the results indicated that the gypsum content and plasticity index have the most significant effect on the predicted angle of internal friction.
The important device in the Wireless Sensor Network (WSN) is the Sink Node (SN). That is used to store, collect and analyze data from every sensor node in the network. Thus the main role of SN in WSN makes it a big target for traffic analysis attack. Therefore, securing the SN position is a substantial issue. This study presents Security for Mobile Sink Node location using Dynamic Routing Protocol called (SMSNDRP), in order to increase complexity for adversary trying to discover mobile SN location. In addition to that, it minimizes network energy consumption. The proposed protocol which is applied on WSN framework consists of 50 nodes with static and mobile SN. The results havw shown in each round a dynamic change in the route to reach mobi
... Show MoreThis research proposes the application of the dragonfly and fruit fly algorithms to enhance estimates generated by the Fama-MacBeth model and compares their performance in this context for the first time. To specifically improve the dragonfly algorithm's effectiveness, three parameter tuning approaches are investigated: manual parameter tuning (MPT), adaptive tuning by methodology (ATY), and a novel technique called adaptive tuning by performance (APT). Additionally, the study evaluates the estimation performance using kernel weighted regression (KWR) and explores how the dragonfly and fruit fly algorithms can be employed to enhance KWR. All methods are tested using data from the Iraq Stock Exchange, based on the Fama-French three-f
... Show MoreThe current study aims at using non-hatchable artemia eggs of local origin and making use of these eggs by decapsulating and presenting them as food for the larvae of the Cyprinus carpio as a source of animal protein with high nutritional value instead of throwing them away. The results showed that the second parameter (A2) was highly significant at the level (P≤0.05) in the growth rates of the larvae that were fed on decapsulated artemia eggs alone, and it was better than the two control parameters (A1), in which the larvae were fed with feed designated for Cyprinus carpio fish. It also outperformed the third parameter (A3), in which the feed was mixed with artemia eggs with 50% decapsulation, which also outperformed the control paramete
... Show MoreUrinary stones are one of the most common painful disorders of the urinary system. Four new technologies have transformed the treatment of urinary stones: Electrohydraulic lithotripsy, ultrasonic lithotripsy, extracorporeal shock wave lithotripsy, and laser lithotripsy.The purpose of this study is to determine whether pulsed holmium laser energy is an effective method for fragmenting urinary tract stones in vitro, and to determine whether stone composition affects the efficacy of holmium laser lithotripsy. Human urinary stones of known composition with different sizes, shapes and colors were used for this study. The weight and the size of each stone were measured. The surgical laser system which used in our study is Ho:YAG laser(2100nm)
... Show MoreThe "Nudge" Theory is considered one of the most recent theories, which is clear in the economic, health, and educational sectors, due to the intensity of studies on it and its applications, but it has not yet been included in crime prevention studies. The use of Nudge theory appears to enrich the theory in the field of crime prevention, and to provide modern, effective, and implementable mechanisms.
The study deals with the "integrative review" approach, which is a distinctive form of research that generates new knowledge on a topic through reviewing, criticizing, and synthesizing representative literature on the topic in an integrated manner so that new frameworks and perspectives are created around it.
The study is bas
... Show MoreIn this study water quality index (WQI) was calculated to classify the flowing water in the Tigris River in Baghdad city. GIS was used to develop colored water quality maps indicating the classification of the river for drinking water purposes. Water quality parameters including: Turbidity, pH, Alkalinity, Total hardness, Calcium, Magnesium, Iron, Chloride, Sulfate, Nitrite, Nitrate, Ammonia, Orthophosphate and Total dissolved solids were used for WQI determination. These parameters were recorded at the intakes of the WTPs in Baghdad for the period 2004 to 2011. The results from the annual average WQI analysis classified the Tigris River very poor to polluted at the north of Baghdad (Alkarkh WTP) while it was very poor to very polluted in t
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show More