Preferred Language
Articles
/
joe-1524
Prediction of Shear Strength Parameters of Gypseous Soil using Artificial Neural Networks
...Show More Authors

The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial voids ratio. Multi-layer perceptron training by the backpropagation algorithm was used in creating the network. It was found that both models can predict shear strength parameters for gypseous soils with good reliability. Sensitivity analysis of the first model indicated that dry unit weight and plasticity index have the most significant effect on the predicted cohesion. While in the second model, the results indicated that the gypsum content and plasticity index have the most significant effect on the predicted angle of internal friction.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (18)
Scopus Crossref
Publication Date
Thu Jun 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Characterization of Delamination Effect on Free Vibration of Composite Laminates Plate Using High Order Shear Deformation Theory
...Show More Authors

 A dynamic analysis method has been developed to investigate and characterize embedded delamination on the dynamic response of composite laminated structures. A nonlinear finite element model for geometrically large amplitude free vibration intact plate and delamination plate analysis is presented using higher order shear deformation theory where the nonlinearity was introduced  in the Green-Lagrange sense. The governing equation of the vibrated plate were derived using the Variational approach. The effect of different orthotropicity ratio, boundary condition and delamination size on the non-dimenational fundamental frequency and frequency ratios of plate for different stacking sequences are studied. Finally th

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Verification and Parametric Analysis of Shear Behavior of Reinforced Concrete Beams using Non-linear Finite Element Analysis
...Show More Authors

Many researchers have tackled the shear behavior of Reinforced Concrete (RC) beams by using different kinds of strengthening in the shear regions and steel fibers. In the current paper, the effect of multiple parameters, such as using one percentage of Steel Fibers (SF) with and without stirrups, without stirrups and steel fibers, on the shear behavior of RC beams, has been studied and compared by using Finite Element analysis (FE). Three-dimensional (3D) models of (RC) beams are developed and analyzed using ABAQUS commercial software. The models were validated by comparing their results with the experimental test. The total number of beams that were modeled for validation purposes was four. Extensive pa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 26 2023
Journal Name
Wasit Journal Of Pure Sciences
Covid-19 Prediction using Machine Learning Methods: An Article Review
...Show More Authors

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Ifip Advances In Information And Communication Technology
Rapid Thrombogenesis Prediction in Covid-19 Patients Using Machine Learning
...Show More Authors

Machine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Dec 19 2017
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Reaction Kinetic of Al- Doura Heavy Naphtha Reforming Process Using Genetic Algorithm
...Show More Authors

In this study, genetic algorithm was used to predict the reaction kinetics of Iraqi heavy naphtha catalytic reforming process located in Al-Doura refinery in Baghdad.  One-dimensional steady state model was derived to describe commercial catalytic reforming unit consisting of four catalytic reforming reactors in series process.

The experimental information (Reformate composition and output temperature) for each four reactors collected at different operating conditions was used to predict the parameters of the proposed kinetic model. The kinetic model involving 24 components, 1 to 11 carbon atoms for paraffins and 6 to 11 carbon atom for naphthenes and aromatics with 71 reactions. The pre-exponential Arrhenius constants and a

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 29 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Prediction of bearing capacity of driven piles for Basrah governatore using SPT and MATLAB
...Show More Authors

Based on the results of standard penetration tests (SPTs) conducted in Al-Basrah governorate, this research aims to present thematic maps and equations for estimating the bearing capacity of driven piles having several lengths. The work includes drilling 135 boreholes to a depth of 10 m below the existing ground level and three standard penetration tests (SPT) at depths of 1.5, 6, and 9.5 m were conducted in each borehole. MATLAB software and corrected SPT values were used to determine the bearing capacity of driven piles in Al-Basrah. Several-order interpolation polynomials are suggested to estimate the bearing capacity of driven piles, but the first-order polynomial is considered the most straightforward. Furthermore, the root means squar

... Show More
Scopus (25)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Sun Jun 01 2014
Journal Name
International Journal Of Advanced Research In Computer Science And Software Engineering
Medical Image Compression using Wavelet Quadrants of Polynomial Prediction Coding & Bit Plane Slicing
...Show More Authors

Publication Date
Wed Dec 01 2021
Journal Name
Civil And Environmental Engineering
Prediction of the Delay in the Portfolio Construction Using Naïve Bayesian Classification Algorithms
...Show More Authors
Abstract<p>Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo</p> ... Show More
Scopus (9)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Tue Jul 19 2022
Journal Name
Arabian Journal For Science And Engineering
Investigation of the Impacts of Nanomaterials on the Micromechanical Properties of Gypseous Soils
...Show More Authors

View Publication Preview PDF
Scopus (27)
Crossref (24)
Scopus Clarivate Crossref