The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial voids ratio. Multi-layer perceptron training by the backpropagation algorithm was used in creating the network. It was found that both models can predict shear strength parameters for gypseous soils with good reliability. Sensitivity analysis of the first model indicated that dry unit weight and plasticity index have the most significant effect on the predicted cohesion. While in the second model, the results indicated that the gypsum content and plasticity index have the most significant effect on the predicted angle of internal friction.
Risk identification and assessment can be analysed using many risk management tools. Fishbone diagram is one of these techniques which can be employed, for the identification of the causes behind the construction failure, which has become a phenomenon that often gets repeated in several projects. If these failures are not understood and handled scientifically, it may lead to disputes between the project parties. Additionally, the construction failure also leads to an increase in the project budget, which in turn causes a delay in the completion of the projects. Punching shear in reinforcement slab may be one of the reasons for construction failures. However, there are many doubts about other causes that lead to this failure as w
... Show MoreThe main aim of this paper is studied the punching shear and behavior of reinforced concrete slabs exposed to fires, the possibility of punching shear failure occurred as a result of the fires and their inability to withstand the loads. Simulation by finite element analysis is made to predict the type of failure, distribution temperature through the thickness of the slabs, deformation and punching strength. Nonlinear finite element transient thermal-structural analysis at fire conditions are analyzed by ANSYS package. The validity of the modeling is performed for the mechanical and thermal properties of materials from earlier works from literature to decrea
... Show MoreThis research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer
... Show MoreObjectives: This study aims to assess and compare the micro-shear bond strength (μSBS) of a novel resin-modified glass-ionomer luting cement functionalized with a methacrylate co-monomer containing a phosphoric acid group, 30 wt% 2-(methacryloxy) ethyl phosphate (2-MEP), with different substrates (dentin, enamel, zirconia, and base metal alloy). This assessment is conducted in comparison with conventional resin-modified glass ionomer cement and self-adhesive resin cement. Materials and methods: In this in vitro study, ninety-six specimens were prepared and categorized into four groups: enamel (A), dentin (B), zirconia (C), and base metal alloys (D). Enamel (E) and dentin (D) specimens were obtained from 30 human maxillary first premolars e
... Show MoreObjective: To enhance bonding strength between thermoplastic denture base and acrylic soft liner through ethyl acetate surface treatment. Materials and Methods: Modifications of thermoplastic acrylic denture base surface were investigated with SEM. FTIR was used to detect whether there was a chemical bond between thermoplastic acrylic and the organic solvent. A total of 80 samples were prepared and divided into 20 samples for the surface roughness test and 60 samples for the shear bond strength test. Failure type was assessed visually. Results: Shear bond strength and surface roughness values of un treated samples were lower in comparison to surface treated groups; the greatest post thermocycling bond strength value was recorded for the sam
... Show MoreThe present research aims to study the effect of friction stir welding (FSW) parameters on temperature distribution and tensile strength of aluminum 6061-T6. Rotational and traverse speeds used were (500,1000,1400 rpm) and (14,40,112 mm/min) respectively. Results of mechanical tests showed that using 500rpm and 14mm/min speed give the best strength. A three- dimensional fully coupled thermal-stress finite element model via ANSYS software has been developed. The Rate dependent Johnson-Cook relation was utilized for elasto-plastic work deformations. Heat-transfer is formulated using a moving heat source, and later used the transient temperature outputs from the thermal analysis to determine equivalent stresses in the welde
... Show More