Preferred Language
Articles
/
joe-149
Fire Flame Influence on the Behavior of reinforced Concrete Beams Affected by Repeated Load
...Show More Authors

The influence and hazard of fire flame are one of the most important parameters that affecting the durability and strength of structural members. This research studied the influence of fire flame on the behavior of reinforced concrete beams affected by repeated load. Nine self- compacted reinforced concrete beams were castellated, all have the same geometric layout (0.15x0.15x1.00) m, reinforcement details and compressive strength (50 Mpa).

To estimate the effect of fire flame disaster, four temperatures were adopted (200, 300, 400 and 500) oC and two method of cooling were used (graduated and sudden). In the first cooling method, graduated, the tested beams were leaved to cool in air while in the second method, sudden, water splash was used to reduce the temperature. Eight of the tested beams were divided in to four groups, each were burned to one of the adopted temperature for about half an hour and cooled by the adopted cooling methods (one by sudden cooling and the other by graduated cooling). After burning and cooling the beams were tested under the effect of repeated load (loading – unloading) for five cycle and then up to failure.

As a compared with the non- burned beam, the results indicated that the ultimate load capacity of the tested beams were reduced by (16, 23, 54 and 71)% after being burned to (200, 300, 400 and 500) oC , respectively, for a case of sudden cooling and by (8, 14, 36 and 64)% , respectively, for a case of graduated cooling. It was also found that the effect of sudden cooling was greater than that in a case of graduated cooling.

Regarding the failure mode, there was a different between the non-burred beam and the other ones even that all of them had the same geometric layout, compressive strength and reinforcement details. The failure mode for all burned beams was combined shear- flexure failure which was belong to the reduction in the compressive strength of the concrete due to the effect of the temperature rising , while the failure mode of the non-burned beam was flexure failure which was compatible with the preliminary design. It was also detected that the residual deflection proportion directly with the temperature, as the temperature increase to (200, 300, 400 and 500) oC the residual deflection compared with the non-burned beam increased by (32, 48, 326 and 358)% for a case of sudden cooling and by (13, 29, 303 and 332)%  for a case of graduated cooling. Another effect was appear represented by the method of cooling, the results showed that the sudden cooling had more effect on the residual deflection than the graduated cooling by (15-6)% approximately. To vanish the residual deflection, numbers of cycle (loading-unloading) were required. It was found that this number increase as the temperature of burning increased and it’s also larger in a case of sudden cooling.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Oct 01 2021
Journal Name
Civil Engineering Journal
Steel Fiber Enhancement upon Punching Shear Strength of Concrete Flat Plates Exposed to Fire Flame
...Show More Authors

In this study, the effect of fire flame on the punching shear strength of steel fiber reinforced concrete flat plates was experimentally investigated using nine half-scale specimens with dimensions of 1500×1500 mm and a total thickness of 100 mm. The main investigated variables comprised the steel fiber volume fraction 0, 1, and 1.5% and the burning steady state temperature 500 and 600 °C. The specimens were divided into three groups, each group consists of three specimens. The specimens in the first group were tested with no fire effect to be the reference specimens, while the others of the second and third groups were tested after being exposed to fire-flame effect. The adopted characteristics of the fire test were; (one hour) b

... Show More
Crossref (3)
Crossref
Publication Date
Mon Aug 05 2019
Journal Name
Journal Of Engineering
Behaviour of Segmental Concrete Beams Reinforced by Pultruded CFRP Plates: an Experimental Study
...Show More Authors

Research aims to develop a novel technique for segmental beam fabrication using plain concrete blocks and externally bonded Carbon Fiber Reinforced Polymers Laminates (CFRP) as a main flexural reinforcement. Six beams designed an experimentally tested under two-point loadings. Several parameters included in the fabrication of segmental beam studied such as; bonding length of carbon fiber reinforced polymers, the surface-to-surface condition of concrete segments, interface condition of the bonding surface, and thickness of epoxy resin layers. Test results of the segmental beams specimens compared with that gained from testing reinforced concrete beam have similar dimensions for validations. The results show the effectiven

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Key Engineering Materials
Performance of Reinforced Concrete Beams with Multiple Openings
...Show More Authors

The present investigation focuses on the response of simply supported reinforced concrete rectangular-section beams with multiple openings of different sizes, numbers, and geometrical configurations. The advantages of the reinforcement concrete beams with multiple opening are mainly, practical benefit including decreasing the floor heights due to passage of the utilities through the beam rather than the passage beneath it, and constructional benefit that includes the reduction of the self-weight of structure resulting due to the reduction of the dead load that achieves economic design. To optimize beam self-weight with its ultimate resistance capacity, ten reinforced concrete beams having a length, width, and depth of 2700, 100, and

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Residual strength and strengthening capacity of reinforced concrete columns subjected to fire exposure by numerical analysis
...Show More Authors
Abstract<p>This study is a numerical investigation of the performance of reinforced concrete (RC) columns after fire exposure. This study aims to investigate the effect of introducing lateral ties and using the RC jacket on improving post-fire behavior of these columns, the effect of the duration of the fire on ultimate load of columns. The analysis was performed through ABAQUS, a 3D – non-linear finite element program. 4 m tall lengthening square RC column with a cross- section of 0.4 m × 0.4 m was used as a test specimen. The RC column was reinforced by 4Ø28 mm longitudinal bars bonded by steel tie bars of Ø10 mm spaced at 400 mm. The firing temperature was increased to 60</p> ... Show More
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Aug 10 2019
Journal Name
Engineering, Technology &amp; Applied Science Research
Performance of Segmental Post-Τensioned Concrete Beams Exposed to High Fire Temperature
...Show More Authors

The present study illustrates observations, record accurate description and discussion about the behavior of twelve tested, simply supported, precast, prestressed, segmental, concrete beams with different segment numbers exposed to high fire temperatures of 300°C, 500°C, and 700°C. The test program included thermal tests by using a furnace manufactured for this purpose to expose to high burning temperature (fire flame) nine beams which were loaded with sustaining dead load throughout the burning process. The beams were divided into three groups depending on the precast segments number. All had an identical total length of 3150mm but each had different segment number (9, 7, and 5 segments), in other words, different segment length

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Sat Dec 11 2021
Journal Name
Engineering, Technology &amp; Applied Science Research
Post-Fire Behavior of Non-Prismatic Beams with Multiple Rectangular Openings Monotonically Loaded
...Show More Authors

The main objective of this paper is to study the behavior of Non-Prismatic Reinforced Concrete (NPRC) beams with and without rectangular openings either when exposed to fire or not. The experimental program involves casting and testing 9 NPRC beams divided into 3 main groups. These groups were categorized according to heating temperature (ambient temperature, 400°C, and 700°C), with each group containing 3 NPRC beams (solid beams and beams with 6 and 8 trapezoidal openings). For beams with similar geometry, increasing the burning temperature results in their deterioration as reflected in their increasing mid-span deflection throughout the fire exposure period and their residual deflection after cooling. Meanwhile, the existing ope

... Show More
Crossref (10)
Crossref
Publication Date
Sat Dec 11 2021
Journal Name
Engineering, Technology &amp; Applied Science Research
Post-Fire Behavior of Non-Prismatic Beams with Multiple Rectangular Openings Monotonically Loaded
...Show More Authors

The main objective of this paper is to study the behavior of Non-Prismatic Reinforced Concrete (NPRC) beams with and without rectangular openings either when exposed to fire or not. The experimental program involves casting and testing 9 NPRC beams divided into 3 main groups. These groups were categorized according to heating temperature (ambient temperature, 400°C, and 700°C), with each group containing 3 NPRC beams (solid beams and beams with 6 and 8 trapezoidal openings). For beams with similar geometry, increasing the burning temperature results in their deterioration as reflected in their increasing mid-span deflection throughout the fire exposure period and their residual deflection after cooling. Meanwhile, the existing ope

... Show More
View Publication Preview PDF
Scopus (18)
Crossref (10)
Scopus Crossref
Publication Date
Sat Aug 21 2021
Journal Name
Engineering, Technology &amp; Applied Science Research
A Comparison between Static and Repeated Load Test to Predict Asphalt Concrete Rut Depth
...Show More Authors

Rutting has a significant impact on the pavements' performance. Rutting depth is often used as a parameter to assess the quality of pavements. The Asphalt Institute (AI) design method prescribes a maximum allowable rutting depth of 13mm, whereas the AASHTO design method stipulates a critical serviceability index of 2.5 which is equivalent to an average rutting depth of 15mm. In this research, static and repeated compression tests were performed to evaluate the permanent strain based on (1) the relationship between mix properties (asphalt content and type), and (2) testing temperature. The results indicated that the accumulated plastic strain was higher during the repeated load test than that during the static load tests. Notably, temperatur

... Show More
View Publication
Crossref (10)
Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Advances In Civil Engineering
Behavior of Strengthened Composite Prestressed Concrete Girders under Static and Repeated Loading
...Show More Authors

The use of external posttensioning technique for strengthening reinforced concrete girders has been considerably studied by many researchers worldwide. However, no available data are seen regarding strengthening full-scale composite prestressed concrete girders with external posttensioned technique under static and repeated loading. In this research, four full-scale composite prestressed I-shape girders of 16 m span were fabricated and tested under static and repeated loading up to failure. Accordingly, two girders were externally strengthened with posttensioned strands, while the other two girders were left without strengthening. The experimental tests include deflection, cracking load, ultimate strength and strains at midspan, a

... Show More
View Publication
Scopus (14)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sat Oct 31 2020
Journal Name
International Journal Of Integrated Engineering
Behavior of High Strength Hybrid Reinforcement Concrete Beams
...Show More Authors

Six proposed simply supported high strength-steel fiber reinforced concrete (HS-SFRC) beams reinforced with FRP (fiber reinforced polymer) rebars were numerically tested by finite element method using ABAQUS software to investigate their behavior under the flexural failure. The beams were divided into two groups depending on their cross sectional shape. Group A consisted of four trapezoidal beams with dimensions of (height 200 mm, top width 250 mm, and bottom width 125 mm), while group B consisted of two rectangular beams with dimensions of (125 ×200) mm. All specimens have same total length of 1500 mm, and they were also considered to be made of same high strength concrete designed material with 1% volume fraction of steel fiber.

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref