Preferred Language
Articles
/
joe-149
Fire Flame Influence on the Behavior of reinforced Concrete Beams Affected by Repeated Load
...Show More Authors

The influence and hazard of fire flame are one of the most important parameters that affecting the durability and strength of structural members. This research studied the influence of fire flame on the behavior of reinforced concrete beams affected by repeated load. Nine self- compacted reinforced concrete beams were castellated, all have the same geometric layout (0.15x0.15x1.00) m, reinforcement details and compressive strength (50 Mpa).

To estimate the effect of fire flame disaster, four temperatures were adopted (200, 300, 400 and 500) oC and two method of cooling were used (graduated and sudden). In the first cooling method, graduated, the tested beams were leaved to cool in air while in the second method, sudden, water splash was used to reduce the temperature. Eight of the tested beams were divided in to four groups, each were burned to one of the adopted temperature for about half an hour and cooled by the adopted cooling methods (one by sudden cooling and the other by graduated cooling). After burning and cooling the beams were tested under the effect of repeated load (loading – unloading) for five cycle and then up to failure.

As a compared with the non- burned beam, the results indicated that the ultimate load capacity of the tested beams were reduced by (16, 23, 54 and 71)% after being burned to (200, 300, 400 and 500) oC , respectively, for a case of sudden cooling and by (8, 14, 36 and 64)% , respectively, for a case of graduated cooling. It was also found that the effect of sudden cooling was greater than that in a case of graduated cooling.

Regarding the failure mode, there was a different between the non-burred beam and the other ones even that all of them had the same geometric layout, compressive strength and reinforcement details. The failure mode for all burned beams was combined shear- flexure failure which was belong to the reduction in the compressive strength of the concrete due to the effect of the temperature rising , while the failure mode of the non-burned beam was flexure failure which was compatible with the preliminary design. It was also detected that the residual deflection proportion directly with the temperature, as the temperature increase to (200, 300, 400 and 500) oC the residual deflection compared with the non-burned beam increased by (32, 48, 326 and 358)% for a case of sudden cooling and by (13, 29, 303 and 332)%  for a case of graduated cooling. Another effect was appear represented by the method of cooling, the results showed that the sudden cooling had more effect on the residual deflection than the graduated cooling by (15-6)% approximately. To vanish the residual deflection, numbers of cycle (loading-unloading) were required. It was found that this number increase as the temperature of burning increased and it’s also larger in a case of sudden cooling.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jul 01 2013
Journal Name
Journal Of Engineering
Behavior of Reinforced Gypseous Soil Embankment Model under Cyclic Loading
...Show More Authors

The construction of embankment for roadway interchange system at urban area is restricted due to the large geometry requirements, since the value of land required for such construction is high, and the area available is limited as compared to rural area. One of the optimum solutions to such problem is the earth reinforcement technique which requires a limited area for embankment construction. Gypseous soil from Al-Anbar governorate area was obtained and subjected to various physical and chemical analysis to determine it is properties. A laboratory model box of 50x50x25 cm was used as a representative embankment; soil has been compacted in five layers at maximum dry density (modified compaction) and an aluminum reinforcement strips we

... Show More
Publication Date
Sun Mar 31 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Behavior of Clay Masonry Prism under Vertical Load Using Detailed Micro Modeling Approach
...Show More Authors

The aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element m

... Show More
Crossref (1)
Crossref
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Engineering
Torsional Resistance of Reinforced Concrete Girders with Web Openings
...Show More Authors
In this study, a three dimensional finite element analysis was utilized to study the behavior of reinforced concrete T-
girders with and without web openings under pure torsion by using
ANSYS
APDL
... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2010
Journal Name
Journal Of Engineering
Analysis of Concrete Flexural Members Reinforced with Fibre Polymer
...Show More Authors

Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Effect of Allowable Vertical Load and Length/Diameter Ratio (L/D) on Behavior of Pile Group Subjected to Torsion
...Show More Authors

Some structures such as tall buildings, offshore platforms, and bridge bents are subjected to lateral loads of considerable magnitude due to wind and wave actions, ship impacts, or high-speed vehicles. Significant torsional forces can be transferred to the foundation piles by virtue of eccentric lateral loading. The testing program of this study includes one group consists of 3 piles, four percentages of allowable vertical load were used (0%, 25%, 50%, and 100%) with two L/D ratios 20 and 30, vertical allowable load 110 N for L/D = 20 and 156 N for L/D = 30. The results obtained indicate that the torsional capacity for pile group increases with increasing the percentage of allowable vertical load, when the percentage of allowable vertica

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Fri Sep 08 2006
Journal Name
Journal Of Engineering
INFLUENCE OF DEFECT IN THE CONCRETE PILES USING NON-DESTRUCTIVE TESTING
...Show More Authors

This paper presents the results of experimental investigation carried out on concrete model piles to study the behaviour of defective piles. This was achieved by employing non-destructive tests using ultrasonic waves. It was found that the reduction in pile stiffness factor is found to be about (26%) when the defect ratio increased from (5%) to (15%). The modulus of elasticity reduction factor as well as the dynamic modulus of elasticity reduction factor increase with the defect ratio

Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Crack Growth Behavior through Wall Pipes under Impact Load and Hygrothremal Environment
...Show More Authors

This research concerns study the crack growth in the wall of pipes made of low carbon steel under the impact load and using the effect of hygrothermal (rate of moisture 50% and 50℃ temperature). The environmental conditions were controlled using high accuracy digital control with sensors. The pipe have a crack already. The test was performed and on two type of specimens, one have length of 100cm and other have length 50cm. The results were, when the humidity was applied to the pipe, the crack would enhance to growth (i.e. the number of cycles needed to growth the crack will reduce). In addition, when the temperature was increase the number of cycles needed to growth the crack are reduced because the effect of heat on the mechanical pro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 12 2017
Journal Name
Nucl Sci Tech
Investigating the influence of gamma ray energies and steel fiber on attenuation properties of reactive powder concrete
...Show More Authors

Scopus (14)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Tue Sep 12 2017
Journal Name
Nuclear Science And Techniques
Investigating the influence of gamma ray energies and steel fiber on attenuation properties of reactive powder concrete
...Show More Authors

View Publication
Crossref (13)
Crossref
Publication Date
Wed Oct 01 2025
Journal Name
Journal Of Engineering
Influence of Nanomaterial Modifiers on Fatigue Resistance of Asphalt Concrete Mixtures: A Review Paper
...Show More Authors

Enhancing fatigue resistance in asphalt binders and mixtures is crucial for prolonging pavement lifespan and improving road performance. Recent advancements in nanotechnology have introduced various nanomaterials such as alumina (NA), carbon nanotubes (CNTs), and silica (NS) as potential asphalt modifiers. These materials possess unique properties that address challenges related to asphalt fatigue. However, their effectiveness depends on proper dispersion and mixing techniques. This review examines the mixing methods used for each nanomaterial to ensure uniform distribution within the asphalt matrix and maximize performance benefits. Recent research findings are synthesized to elucidate how these nanomaterials and their mixing proce

... Show More
View Publication
Crossref