Preferred Language
Articles
/
joe-1486
Estimating Pitting Corrosion Depth and Density on Carbon Steel (C-4130) using Artificial Neural Networks
...Show More Authors

The purpose of this research is to investigate the impact of corrosive environment (corrosive ferric chloride of 1, 2, 5, 6% wt. at room temperature), immersion period of (48, 72, 96, 120, 144 hours), and surface roughness on pitting corrosion characteristics and use the data to build an artificial neural network and test its ability to predict the depth and intensity of pitting corrosion in a variety of conditions. Pit density and depth were calculated using a pitting corrosion test on carbon steel (C-4130). Pitting corrosion experimental tests were used to develop artificial neural network (ANN) models for predicting pitting corrosion characteristics. It was found that artificial neural network models were shown to be quite effective; the results were validated by the experimental agreement with those acquired from laboratory tests. Specifically, the correlation coefficient, R = 0.9944.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Oct 15 2023
Journal Name
Journal Of Yarmouk
Artificial Intelligence Techniques for Colon Cancer Detection: A Review
...Show More Authors

Publication Date
Mon Sep 30 2024
Journal Name
Iraqi Journal Of Science
Attention-Deficit Hyperactivity Disorder Prediction by Artificial Intelligence Techniques
...Show More Authors

Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Tue May 23 2023
Journal Name
Journal Of Engineering
Serviceability Performance of Externally Prestressed Steel-Concrete Composite Girders
...Show More Authors

The behavior of externally prestressed composite beams under short term loading has been studied. A computer program developed originally by Oukaili to evaluate curvature is modified to evaluate the deflection of prestressed composite beam under flexural load. The analysis model based on the deformation compatibility of entire structure that allows to determine the full history of strain and stress distribution along cross section depth, deflection and stress increment in the external tendons .
The evaluation of curvatures for the composite beam involves iterations for computing the strains vectors at each node at any loading stage. The stress increment determined using equations depended on the member deflection at points of connecti

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Apr 01 2003
Journal Name
Abhath Al- Yarmouk [basic Sciences And Engineering]
Methodology for selecting Nonprestressed Steel in Post- Tensioning Beams
...Show More Authors

Publication Date
Sun Apr 01 2007
Journal Name
Journal Of Engineering
CURVATURE DUCTILITYOF REINFORCED CONCRETE BEAMSECTIONS STIFFENED WITH STEEL PLATES
...Show More Authors

Publication Date
Wed Dec 25 2019
Journal Name
Journal Of Engineering
Non-deterministic Approach for Reliability Evaluation of Steel Beam
...Show More Authors

This paper aims to evaluate the reliability analysis for steel beam which represented by the probability of Failure and reliability index. Monte Carlo Simulation Method (MCSM) and First Order Reliability Method (FORM) will be used to achieve this issue. These methods need two samples for each behavior that want to study; the first sample for resistance (carrying capacity R), and second for load effect (Q) which are parameters for a limit state function. Monte Carlo method has been adopted to generate these samples dependent on the randomness and uncertainties in variables. The variables that consider are beam cross-section dimensions, material property, beam length, yield stress, and applied loads. Matlab software has be

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Jun 01 2013
Journal Name
Journal Of Engineering
Serviceability Performance of Externally Prestressed steel-Concrete Composite Girders
...Show More Authors

Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Parameters of General Linear Model in Presence of Heteroscedastic Problem and High Leverage Points
...Show More Authors

Linear regression is one of the most important statistical tools through which it is possible to know the relationship between the response variable and one variable (or more) of the independent variable(s), which is often used in various fields of science. Heteroscedastic is one of the linear regression problems, the effect of which leads to inaccurate conclusions. The problem of heteroscedastic may be accompanied by the presence of extreme outliers in the independent variables (High leverage points) (HLPs), the presence of (HLPs) in the data set result unrealistic estimates and misleading inferences. In this paper, we review some of the robust

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 18 2024
Journal Name
Journal Port Science Research
Verifying The Association Between IL6 -174G/C Polymorphism in Type 2 Diabetes Mellitus
...Show More Authors

Background : Diabetes mellitus, also known as blood sugar, is a series of metabolic disorders described by high blood glucose levels (hyperglycemia), low blood glucose (hypoglycemia), or both, resulting from defects in insulin production, insulin action, or both. Numerous studies have shown that interleukin (IL-6) acts on skeletal muscle cells , liver cells, and pancreas cells to influence glucose balance and metabolism, which directly or indirectly contributes to the development of diabetes. Research in this area is crucial because diabetes is recognized as a major risk factor for many diseases like Diabetic retinopathy, Diabetic nephropathy, Diabetic Neuropathy , heart disease and others.  Patients and methods : In this study, we

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref