Al-Chibayish Marsh (CM) is considered as the major part of Central Marshes area of this marsh is 1050 Km². The water quality of these marshes is suffering from salt accumulation due to intensive dam construction, limited supply of water from sources, climate change impacts, and the absence of outlet flow from these marshes, specifically at low flow periods. So, the current research aims to assess and improve these marshes' hydraulic behavior and water quality and define the best location for outlet drains. Field measurements and laboratory tests were conducted for two periods (November 2020 and February 2021) to define the (TDS) concentrations at nine different locations. Samples were also examined for water's physical and chemical properties as pH, electrical conductivity, water temperature, dissolved oxygen, and turbidity. Simultaneously with the sampling process, the water depths were measured at 50 different locations within the marshes. Moreover, the observations of water quality parameters were analyzed for the previous ten years (2010-2020). Hydrodynamic and water quality simulations were conducted using (SMS-RMA2 and RMA4) software to specify the water depths and velocity variations and define the salt content distribution. The obtained results illustrated 4sediment and TDS and in the Central Marshes area in general and CM in specific. As well, numerical results showed that the use of these outlets would significantly improve water quality. The current outlets do not work, and they link the Euphrates River to the Chabayish Marsh.
The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The develope
... Show MoreThe Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The
... Show Morewater quality assessment is still being done at specific locations of major concern. The use of Geographical Information System (GIS) based water quality information system and spatial analysis with Inverse Distance Weighted interpolation enabled the mapping of water quality indicators along Tigris river in Salah Al-Din government, Iraq. Water quality indicators were monitored by taking 13 river samples from different locations along the river during Winter season year 2020. Maps of 10 water quality indicators. This meant that the specific water quality indicator and diffuse pollution characteristics in the basin were better illustrated with the variations displayed along the course of the river than conventional line graphs. Creation of
... Show MoreIn this study water quality was indicated in terms of Water Quality Index that was determined through summarizing multiple parameters of water test results. This index offers a useful representation of the overall quality of water for public or any intended use as well as indicating pollution, water quality management and decision making. The application of Water Quality Index (WQI) with sixteen physicochemical water quality parameters was performed to evaluate the quality of Tigris River water for drinking usage. This was done by subjecting the water samples collected from eight stations in Baghdad city during the period 2004-2010 to comprehensive physicochemical analysis. The sixteen physicochemical parameters included: Turbidity,
... Show MoreIn this study water quality was indicated in terms of Water Quality Index that was determined through summarizing multiple parameters of water test results. This index offers a useful representation of the overall quality of water for public or any intended use as well as indicating pollution, water quality management and decision making. The application of Water Quality Index
(WQI) with sixteen physicochemical water quality parameters was performed to evaluate the quality of Tigris River water for drinking usage. This was done by subjecting the water samples collected from eight stations in Baghdad city during the period 2004-2010 to comprehensive physicochemical analysis. The sixteen physicochemical parameters included: Turbidity, A
In this study water quality was indicated in terms of Water Quality Index that was determined through summarizing multiple parameters of water test results. This index offers a useful representation of the overall quality of water for public or any intended use as well as indicating pollution, which are useful in water quality management and decision making. The application of Water Quality Index (WQI) with ten physicochemical water quality parameters was performed to evaluate the quality of Euphrates River water for drinking usage. This was done by subjecting the water samples collected from seven stations within Al-Anbar province during the period 2004-2010 to comprehensive physicochemical analysis. The ten physicochemical parame
... Show MoreIn this study water quality was indicated in terms of Water Quality Index that was determined through summarizing multiple parameters of water test results. This index offers a useful representation of the overall quality of water for public or any intended
use as well as indicating pollution, which are useful in water quality management and decision making. The application of Water Quality Index (WQI) with ten physicochemical water quality parameters was performed to evaluate the quality of Euphrates River water for drinking usage. This was done by subjecting the water samples collected from seven stations within Al-Anbar province during the period 2004-2010 to comprehensive physicochemical analysis. The ten physicochemical paramete
Safe drinking water is essential for the present and future generations' health. This study aims to assess drinking water quality in Baghdad's Al-Rusafa neighborhood. Water samples were taken from 32 neighborhoods on this side. The quality of the examined potable water samples differed depending on the water source. This investigation's pH, chlorine, EC, TDS, TSS, Cd, and Pb levels were below acceptable ranges. TDS levels in Al-Mada'in are more significant than acceptable (>600ppm) water levels. Bacteria have polluted six communities (Shigella, Salmonella, Escherichia coli, and Klebsiella). Bacterial quality of drinking water and gram-negative bacteria resistant to chlorine in Baghdad's municipal water supply. Regarding pH, the w
... Show MoreGroundwater is an important resource that can be used for various purposes. Various factors can change the chemistry of the GW, such as the chemical composition of an aquifer as well as the leaching of human waste into groundwater. The study area is a barren land covered by some sabkhas, in addition to some agricultural fields. The study aims to assess groundwater quality for drinking purposes using the Water Quality Index. The groundwater is chemically heterogeneous and has a wide quality range from very poor to excellent. Evaporation appears to be the controlling factor among the other shallow waters, while relatively deep water is related to rock-soil dominance. Rocks, land use and land cover have helped control the groundwater q
... Show More