When the flange of a reinforced concrete spandrel beam is in tension, current design codes and specifications enable a portion of the bonded flexure tension reinforcement to be distributed over an effective flange width. The flexural behavior of the RC L-shaped spandrel beam when reinforcement is laterally displaced in the tension flange is investigated experimentally and numerically in this work. Numerical analysis utilizing the finite element method is performed on discretized flanged beam models validated using experimentally verified L-shaped beam specimens to achieve study objectives. A parametric study was carried out to evaluate the influence of various factors on the beam’s flexure behavior. Results showed that as the percentage of the reinforcement distributed has increased over a greater width of the flange, a considerable drop in beam flexure strength was observed with excessive deflection. According to the study, not more than 33% of the web tension reinforcement might be distributed over an effective flange width less than ln/10, including the web region, as recommended by the ACI318-14.
The behavior and shear strength of full-scale (T-section) reinforced concrete deep beams, designed according to the strut-and-tie approach of ACI Code-19 specifications, with various large web openings were investigated in this paper. A total of 7 deep beam specimens with identical shear span-to-depth ratios have been tested under mid-span concentrated load applied monotonically until beam failure. The main variables studied were the effects of width and depth of the web openings on deep beam performance. Experimental data results were calibrated with the strut-and-tie approach, adopted by ACI 318-19 code for the design of deep beams. The provided strut-and-tie design model in ACI 318-19 code provision was assessed and found to be u
... Show MoreExperimental work has been performed on three capillary tubes of different lengths and diameters using R-12 and R-134a. The test also studies the effect of discharge and speed of evaporator fan. The results clearly showed that refrigerant type and discharge significantly influence the temperature drop across the capillary tube. While the speed of evaporator fan has small effect. Experimental results showed that the temperature gradient for the two refrigerants are the same, but after approximatly one meter the temperature gradient of R-134a is steeper than R-12.
The goal of this study is to investigate the relationship between the student and the teacher and the student's behavior for a subject of the student in the intermediate stage, the sample contained (568) student, (266) male and (302) female.
The scale of student – teacher relationship was built according to a questionnaire pointed to a sample of the students, adding to that reviewing a number of previous scales and studies which was about the same topic, and in the same way a measure of student behavior was constructed.
Results showed that there was significant relation between the student's teacher relationship and student behavior, and the level of student- teacher relationship is higher than the average of the population that
The kindergarten teacher play a role in fixing the children behavior so she must plant the value and the habits that make a positive behavior and accepted by the society so the teacher must know all the right educational psychological styles to fix the children behavior and make them accepted psychologically and socially so the problem of the research start from knowing the relation between the methods of dealing with the kindergarten’s teachers and the non right behavior appearance for the kindergarten children. The current research aims to measure the negative behavior appearance of the children of kindergarten and distinguish it according to (sex and levels) and to distinguish the most using styles by the teachers of kinderg
... Show MoreGround Penetration Radar (GPR) is a modern and promising geophysical technique for near-subsurface exploring and observing because of its characteristic working scheme (instantaneous underground radargram displaying and subsurface features preserving during the detection tests). In this technique a very high and/ or ultra-high electromagnetic radiation frequencies were utilized to be transmitted to the targeted underground area, then the reflected ones which occur because of the sudden changes in the medium electric properties or texture would be recorded and processed to achieve the final GPR radargram.
The main goal of this study is to find out the GPR radiation extension which is suitable for concrete
... Show MoreThe major cause of destruction during vertical vibration is the failure of the soil structure. The soil may fail due to loss of strength during continues vibration. The saturated sandy soil losses strength due to an increase in pore pressure, this phenomenon is called "liquefaction". Piled foundations are usually adopted as a foundation solution in potentially liquefiable soil under dynamic loading. In this research, 3D finite element model using PLAXIS Software was employed for pile foundation in saturated sandy soil. The results show the acceleration mobilization and velocity on the footing increases with increasing the intensity of dynamic loads and it becomes zero at maximum value of vertical settlement which indicates the end of the ti
... Show MoreEpoxy resin has many chemical features and mechanical properties, but it has a small elongation at break, low impact strength and crack propagation resistance, i.e. it exhibits a brittle behavior. In the current study, the influence of adding kaolin with variable particle size on the mechanical properties (flexural modulus E, toughness Gc, fracture toughness Kc, hardness HB, and Wear rate WR) of epoxy resin was evaluated. Composites of epoxy with varying concentrations (0, 10, 20, 30, 40 weights %) of kaolin were prepared by hand-out method. The composites showed improved (E, Gc, Kc, HB, and WR) properties with the addition of filler. Also, similar results were observed with the decrease in particle size. In addition, in this study, mult
... Show MoreThe aim of this work is to evaluate some mechanical and physical
properties (i.e. the impact strength, hardness, flexural strength,
thermal conductivity and diffusion coefficient) of
(epoxy/polyurethane) blend reinforced with nano silica powder (2%
wt.). Hand lay-up technique was used to manufacture the composite
and a magnetic stirrer for blending the components. Results showed
that water had affected the bending flexural strength and hardness,
while impact strength increased and thermal conductivity decreased.
In addition to the above mentioned tests, the diffusion coefficient
was calculated using Fick’s 2nd law.