Preferred Language
Articles
/
joe-145
Sliding Mode Vibration Suppression Control Design for a Smart Beam
...Show More Authors

Active vibration control is the main problem in different structure. Smart material like piezoelectric make a structure smart, adaptive and self-controlling so, they are effective in active vibration control. In this paper piezoelectric elements are used as sensors and actuators in flexible structures for sensing and actuating purposes, and to control the vibration of a cantilever beam by using sliding mode control. The sliding mode controller (SMC) is designed to attenuate the vibration induced by initial tip displacement which is equal to 15 mm.  It is designed based on the balance realization reduction method where three states are selected for the reduced model from the 24th states that describe the cantilever beam according to the FEM. These states are most controllable and observable. The stability and control performance for the proposed SMC are proved using candidate Lyapunov function and the equivalent control concept. The control spillover, which is the sources of instability, is completely avoided as ensured within the control performance proof.

            Numerical simulations are preformed to test the vibration attenuation ability of the proposed SMC. For 15 mm initial tip displacement, the piezoelectric actuator was found able to reduce the tip displacement to about (0.2) mm within (2.5 s), while it is equal to (3.5) mm with the open loop case. Moreover, the induced chattering in system response, due to the discontinuous control action, is removed by approximating the signum function by a continuous arctan function. As a result  a smoother response are obtained with the same control performance as can be shown in the sliding variable, the control input voltage and the tip displacement plots.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Heave Behavior of Granular Pile Anchor-Foundation System (GPA-Foundation System) in Expansive Soil
...Show More Authors

Granular  Pile  Anchor  (GPA)  is  one  of  the  innovative  foundation  techniques,  devised  for mitigating heave of footing resulting from the expansive soils. This research attempts to study the heave behavior of (GPA-Foundation System) in expansive soil. Laboratory tests have been conducted on an experimental model in addition to a series of numerical modeling and analysis using the finite element package PLAXIS software. The effects of different parameters, such as (GPA) length (L) and diameter (D), footing diameter (B), expansive clay layer thickness (H) and presence of non-expansive clay are studied. The results proved the efficiency of (GPA) in reducing the heave of exp

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Behavior of Spliced Steel Girders under Static Loading
...Show More Authors

In this paper, the behavior of spliced steel girders under static loading is investigated. A group of seven steel I-girders were tested experimentally. Two concentrated loads were applied to each specimen at third points and the load was increased incrementally up to the yield of the specimen. Two types of splices were considered; the bearing type and the friction-grip type splices. For comparison, an analytical study was made for the tested girders in which the finite element analysis program (Abaqus) was used for analysis. It was found that the maximum test load for spliced girders with bearing type splices was in the range of (34%) to (67%) of the maximum test load for the reference girder. For girders spliced by using friction-grip t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Experimental and Numerical Study on CFRP-Confined Square Concrete Compression Members Subjected to Compressive Loading
...Show More Authors

    

Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software.

The aim of this research is to study experime

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Journal Of Engineering
Numerical Study of Composite Concrete Castellated Double Channel Beams with Strengthening Techniques
...Show More Authors

Current numerical research was devoted to investigating the effect of castellated steel beams without and with strengthening. The composite concrete asymmetrical double hot rolled steel channels bolted back to back to obtain a built-up I-shape form are used in this study. The top half part of the steel is smaller than the bottom half part, and the two parts were connected by bolting and welding. The ABAQUS/2019 program employed the same length and conditions of loading for four models: The first model is the reference without castellated and strengthening; the second model was castellated without strengthened; the third model was castellated and strengthened with reactive powder concrete encased in the

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Buckling Analysis Of Damaged Composite Plates Under Uniform Or Non-Uniform Compressive Load
...Show More Authors

The present study focused mainly on the buckling behavior of composite laminated plates subjected to mechanical loads. Mechanical loads are analyzed by experimental analysis, analytical analysis (for laminates without cutouts) and numerical analysis by finite element method (for laminates with and without cutouts) for different type of loads which could be uniform or non-uniform, uniaxial or biaxial. In addition to many design parameters of the laminates such as aspect ratio, thickness ratio, and lamination angle or the parameters of the cutout such as shape, size, position, direction, and radii rounding) which are changed to studytheir effects on the buckling characteristics with various boundary conditions. Levy method of classical lam

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Theoretical Investigations on the Structural Behavior of Biaxial Hollow Concrete Slabs
...Show More Authors

This paper presents a numerical analysis using ANSYS finite element program to simulate the reinforced concrete slabs with spherical voids. Six full-scale one way bubbled slabs of (3000mm) length with rectangular cross-sectional area of (460mm) width and (150mm) depth are tested as simply supported under two-concentrated load. The results of the finite element model are presented and compared with the experimental data of the tested slabs. Material nonlinearities due to cracking and crushing of concrete and yielding of reinforcement are considered. The general behavior of the finite element models represented by the load-deflection curves at midspan, crack pattern, ultimate load, load-concrete strain curves and failure m

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 10 2018
Journal Name
Ceramics International
Application of zirconia surface coating to improve fracture resistance and stress distribution of zirconia ceramic restorations
...Show More Authors

Zirconia ceramic restoration (ZCR) has a higher fracture incidence rate than metal ceramic restoration. Different surface treatments were used to improve fracture performance of ZCR such as grit blasting (GB) by aluminium oxide powder. This type of surface treatment generate residual stresses on veneering ceramic causing crack initiation and ending with a fracture. In order to overcome the stress generated by GB, zirconia surface coating is used as a surface treatment to improve fracture resistance and to accommodate stresses along the ZCR layers. Fifty zirconia ceramic crowns were fabricated and divided according to the type of surface treatment into three groups; the first group is (ZG), involving 20 cores were coated with a mixture of pa

... Show More
Scopus (4)
Scopus
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Improving Press Bending Production Quality through Finite Element Simulation: Integration CAD and CAE Approach
...Show More Authors

Efficient operations and output of outstanding quality distinguish superior manufacturing sectors. The manufacturing process production of bending sheet metal is a form of fabrication in the industry of manufacture in which the plate is bent using punches and dies to the angle of the work design. Product quality is influenced by plate material selection, which includes thickness, type, dimensions, and material. Because no prior research has concentrated on this methodology, this research aims to determine V-bending capacity limits utilizing the press bending method. The inquiry employed finite element analysis (FEA), along with Solidworks was the tool of choice to develop drawings of design and simulations. The ASTM E290

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Buckling Analysis of Composite Plates under Thermal and Mechanical Loading
...Show More Authors

Buckling analysis of composite laminates for critical thermal (uniform and linear) and mechanical loads is reported here. The objective of this work is to carry out theoretical investigation of buckling analysis of composite plates under thermomechanical loads, and experimental investigation under mechanical loads. The analytical investigation involved certain mathematical preliminaries, a study of equations of orthotropic elasticity for classical laminated plate theory (CLPT), higher order shear deformation plate theory (HSDT) , and numerical analysis (Finite element method), then the equation of motion are derived and solved using Navier method and Levy method for symmetric and anti-symmetric cross-ply and angle-ply laminated plates t

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
The evaluation of the procedures of excution the national strategy of unti - corruption in Iraq (2014-2010)
...Show More Authors

    Corruption has become the subject of great interest, and the subject of research and scrutiny in recent years, because of its penetration in all fields of life,  whether these fields are political, economic, social, and administrative. It is one of the biggest challenges and problems that are facing communities. Therefore, this study is focused on the evaluation of measures implementing the national strategy to combat corruption in Iraq.

This study was launched, first because of its intellectual dimensions to ensure a conceptual presentation of the strategy and operational management in general with a special focus on the processes of implementation and control str

... Show More
View Publication Preview PDF
Crossref