Preferred Language
Articles
/
joe-1439
Nonlinear Finite Element Analysis of Fiber Reinforced Concrete Pavement under Dynamic Loading
...Show More Authors

The analysis of rigid pavements is a complex mission for many reasons. First, the loading conditions include the repetition of parts of the applied loads (cyclic loads), which produce fatigue in the pavement materials. Additionally, the climatic conditions reveal an important role in the performance of the pavement since the expansion or contraction induced by temperature differences may significantly change the supporting conditions of the pavement. There is an extra difficulty because the pavement structure is made of completely different materials, such as concrete, steel, and soil, with problems related to their interfaces like contact or friction. Because of the problem's difficulty, the finite element simulation is the best technique incorporated in the analysis of rigid pavements. The ABAQUS software was used to conduct the response of previously tested specimens under different loading conditions. Good agreement between the laboratory and finite element results was observed. The maximum differences between experimental and finite element outcomes in terms of ultimate loads and ultimate deflection for rigid pavements under monotonic loading are 6% and 8%, respectively, and 10% and 18% respectively for the repeated load.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Comparative Study between Recycled Fine and Coarse Aggregate Used in Roller Compacted Concrete Pavement
...Show More Authors

To decrease the impact on the environment of building waste, the recycled aggregate may be used in various sustainable engineering applications, such as roller compacted concrete pavement (RCCP). This research examined how using recycled aggregate as a partial replacement for natural aggregate as coarse or fine affected the mechanical properties of roller-compacted concrete pavement. The recycled aggregate was crushed and sieved to coarse and fine aggregate before being used in the roller-compacted concrete pavement. Compressive strength, splitting tensile strength, and flexural strength were all evaluated after the samples were prepared at 28 and 90 days of curing. According to the study's findings, the partial replacem

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed May 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
Effect of sustainable palm fiber on high strength concrete properties
...Show More Authors
Abstract<p>Date palm fiber is one of the common wastes available in the M. E. countries essentially Iraq. The aim of search to investigate the performance and effects of fiber date palm on the mechanical properties of high strength concrete, this fiber was used in three ratio 2, 4 and 6 % by vol. of concrete at ages of (7, 28, 90) days. Results demonstrated improvement in the compressive strength increased 19.2 %, 23.6%, 24.9 % for 2%, 4%, 6% of fiber respectively at age 28 days. Flexural strength increases 47.6%, 66.2%, 93.8% form (2,4,6) % of fiber respectively at age 28 days. Density increase about 0.41%, 0, 61 % 0.69 % for (2,4,6) % of fiber respectively at age 28. Absorption water decrease </p> ... Show More
View Publication
Crossref (6)
Crossref
Publication Date
Fri May 21 2021
Journal Name
Transportation Infrastructure Geotechnology
Behavior of Floating Stone Columns and Development of Porewater Pressure Under Cyclic Loading
...Show More Authors

View Publication Preview PDF
Scopus (16)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Rehabilitation of Reinforced Concrete Deep Beam by Epoxy Resin
...Show More Authors

This investigation presents an experimental and analytical study on the behavior of reinforced concrete deep beams before and after repair. The original beams were first loaded under two points load up to failure, then, repaired by epoxy resin and tested again. Three of the test beams contains shear reinforcement and the other two beams have no shear reinforcement. The main variable in these beams was the percentage of longitudinal steel reinforcement (0, 0.707, 1.061, and 1.414%). The main objective of this research is to investigate the possibility of restoring the full load carrying capacity of the reinforced concrete deep beam with and without shear reinforcement by using epoxy resin as the material of repair. All be

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of The Mechanical Behavior Of Materials
Performance of doubly reinforced concrete beams with GFRP bars
...Show More Authors
Abstract<p>The study focused on examining the behavior of six concrete beams that were reinforced with glass fiber-reinforced polymer (GFRP) bars to evaluate their performance in terms of their load-carrying capacity, deflection, and other mechanical properties. The experimental investigation would provide insights into the feasibility and effectiveness of GFRP bars as an alternative to traditional reinforcement materials like steel bars in concrete structures. The GFRP bars were used in both the longitudinal and transverse directions. Each beam in the study shared the following specifications: an overall length of 2,400 mm, a clear span of 2,100 mm, and a rectangular cross-section measuring</p> ... Show More
View Publication
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Engineering
Torsional Resistance of Reinforced Concrete Girders with Web Openings
...Show More Authors
In this study, a three dimensional finite element analysis was utilized to study the behavior of reinforced concrete T-
girders with and without web openings under pure torsion by using
ANSYS
APDL
... Show More
View Publication Preview PDF
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Physics
Effect of industrial powder on mechanical properties of glass fiber reinforced epoxy composite
...Show More Authors

In the present study, composites were prepared by Hand lay-up molding and investigated. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of industrial powder (Calcium Carbonate CaCO3, Potassium Carbonate K2CO3 and Sodium Carbonate Na2CO3) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than composites material. Measured density results had show an incremental increase with volume fraction increase

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed May 01 2019
Journal Name
Proceedings Of International Structural Engineering And Construction
FLEXURAL DUCTILITY OF STRUCTURAL CONCRETE MEMBERS SUBJECTED TO LIMITED CYCLES OF REPEATED LOADING
...Show More Authors

For structural concrete members that may expose to serious earthquake, overload or accident impact, the design of ductility must be given the same importance as the flexural strength. The aim of this investigation is to study the change in ductility of structural concrete flexural members during their exposure to limited cycles of repeated loading. Twenty full-scale beam specimens have been fabricated in to two identical groups; each group consisted of ten specimens. The first group was tested under monotonic static loading to failure and regarded as control beams, while the specimens of the second group were subjected to ten cycles of repeated loading with constant load interval, which ranged between 40% and 60% of ultimate load. S

... Show More
View Publication
Scopus Crossref
Publication Date
Wed May 01 2019
Journal Name
Proceedings Of International Structural Engineering And Construction
FLEXURAL DUCTILITY OF STRUCTURAL CONCRETE MEMBERS SUBJECTED TO LIMITED CYCLES OF REPEATED LOADING
...Show More Authors

For structural concrete members that may expose to serious earthquake, overload or accident impact, the design of ductility must be given the same importance as the flexural strength. The aim of this investigation is to study the change in ductility of structural concrete flexural members during their exposure to limited cycles of repeated loading. Twenty full-scale beam specimens have been fabricated in to two identical groups; each group consisted of ten specimens. The first group was tested under monotonic static loading to failure and regarded as control beams, while the specimens of the second group were subjected to ten cycles of repeated loading with constant load interval, which ranged between 40% and 60% of ultimate load. S

... Show More
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Buckling Behavior of Aluminum Alloy Thin-Walled Beam with Holes under Compression Loading
...Show More Authors

Thin-walled members are increasingly used in structural applications, especially in light structures like in constructions and aircraft structures because of their high strength-to-weight ratio. Perforations are often made on these structures for reducing weight and to facilitate the services and maintenance works like in aircraft wing ribs. This type of structures suffers from buckling phenomena due to its dimensions, and this suffering increases with the presence of holes in it. This study investigated experimentally and numerically the buckling behavior of aluminum alloy 6061-O thin-walled lipped channel beam with specific holes subjected to compression load. A nonlinear finite elements analysis was used to obtain the

... Show More
View Publication Preview PDF
Crossref (4)
Crossref