The analysis of rigid pavements is a complex mission for many reasons. First, the loading conditions include the repetition of parts of the applied loads (cyclic loads), which produce fatigue in the pavement materials. Additionally, the climatic conditions reveal an important role in the performance of the pavement since the expansion or contraction induced by temperature differences may significantly change the supporting conditions of the pavement. There is an extra difficulty because the pavement structure is made of completely different materials, such as concrete, steel, and soil, with problems related to their interfaces like contact or friction. Because of the problem's difficulty, the finite element simulation is the best technique incorporated in the analysis of rigid pavements. The ABAQUS software was used to conduct the response of previously tested specimens under different loading conditions. Good agreement between the laboratory and finite element results was observed. The maximum differences between experimental and finite element outcomes in terms of ultimate loads and ultimate deflection for rigid pavements under monotonic loading are 6% and 8%, respectively, and 10% and 18% respectively for the repeated load.
The present work represents a theoretical study for the correction of spherical aberration of an immersion lens of axial symmetry operating under the effect of space charge, represented by a second order function and preassigned magnification conditions in a focusing of high current ion beams. The space charge depends strongly on the value of the ionic beam current which is found to be very effective and represents an important factor effecting the value of spherical aberration .The distribution of the space charge was measured from knowing it's density .It is effect on the trajectory of the ion beam was studied. To obtain the trajectories of the charged particles which satisfy the preassined potential the axial electrostatic potential w
... Show MoreAnodic electrodeposition was used to synthesize a composite electrode of nanostructured manganese dioxide/carbon fiber (CF) galvanostatically. Different characterization results of the nanostructured MnO2 were obtained by varying the H2SO4 concentration and the current density. Field emission scanning electron microscopy, X‐ray diffraction, and atomic force microscopy were utilized to characterize the prepared composite electrodes. The best conditions were: 0.3 mA cm−2 current density and 0.64 M H2SO4 concentration. The electrosorption performance of the MnO
The aim of this research is to know how business organizations achieve competitive advantage ,and make it sustainable through constructing a green strategy ( friend to environment) which is reflected on sustaining their competitive advantages .The problem of this study is presented through trying to answer many thoughtful questions, the most important of them are:
1-Can business organizations today make green strategies supporting their competitive advantage?
2-Is there a framework or mechanism could be depended on by business organizations to manage strategic risks of losing their competit
... Show MoreIn this experimental and numerical analysis, three varieties of under-reamed piles comprising one bulb were used. The location of the bulb changes from pile to pile, as it is found at the bottom, center, and top of the pile, respectively.
The primary components of successful engineering projects are time, cost, and quality. The use of the ring footing ensures the presence of these elements. This investigation aims to find the optimum number of geogrid reinforcement layers under ring footing subjected to inclined loading. For this purpose, experimental models were used. The parameters were studied to find the optimum geogrid layers number, including the optimum geogrid layers spacing and the optimum geogrid layers number. The optimum geogrid layers spacing value is 0.5B. And as the load inclination angle increased, the tilting and the tilting improvement percent for the load inclination angles (5°,10°,15°) are (40%,28%, and 5%) respectively. The reduction percent o
... Show MoreThe primary components of successful engineering projects are time, cost, and quality. The use of the ring footing ensures the presence of these elements. This investigation aims to find the optimum number of geogrid reinforcement layers under ring footing subjected to inclined loading. For this purpose, experimental models were used. The parameters were studied to find the optimum geogrid layers number, including the optimum geogrid layers spacing and the optimum geogrid layers number. The optimum geogrid layers spacing value is 0.5B. And as the load inclination angle increased, the tilting and the tilting improvement percent for the load inclination angles (5°,10°,15°) are (40%,28%, and 5%) respectively. The reduction percent of the
... Show MoreAt a time when the general rules in the different legal systems require the presence of two parties to the contract, one of which is issued the first expression of the will and is called the offer, and the other is issued from the other and is called the acceptance. A special type of contracts emerged in the beginning of the last century called the “unilateral contracts”. The side sparked a major jurisprudential dispute, as well as the issuance of several contradictory judicial rulings on it. Hence, this research came to highlight this special type of contract. Key words: the definition of a unilateral contract, its distinction from other legal situations, and its effects.
Mass transfer correlations for iron rotating cylinder electrode in chloride/sulphate solution, under isothermal and
controlled heat transfer conditions, were derived. Limiting current density values for the oxygen reduction reaction from
potentiostatic experiments at different bulk temperatures and various turbulent flow rates, under isothermal and heat
transfer conditions, were used for such derivation. The corelations were analogous to that obtained by Eisenberg et all
and other workers.
