Preferred Language
Articles
/
joe-1435
Study of Using of Recycled Brick Waste (RBW) to produce Environmental Friendly Concrete: A Review
...Show More Authors

Several million tons of solid waste are produced each year as a result of construction and demolition activities around the world, and brick waste is one of the most widely wastes. Recently, there has been growing number in studies that conducted on using of recycling brick waste (RBW) to produce environmentally friendly concrete. The use of brick waste (BW) as potential partial cement or aggregate replacement materials is summarized in this review where the performance is discussed in the form of the mechanical strength and properties that related to durability of  concrete. It was found that, because the pozzolanic activity of clay brick powder, it can be utilized as substitute for cement in replacement level up to 10%. Whereas, for natural coarse aggregate, recycled aggregate can be used instead of it, but in limited replacement level. Concrete manufacturing from recycled aggregate can give adequate strength and can be suitable for the producing medium or low strength concrete. On the other side, the utilization of fine recycled brick waste as aggregate in the concrete manufacturing  provide development of the properties of concrete and it develops the durability of concrete in some cases when used with replacement level up to 10% by the weight of fine aggregate.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jul 14 2021
Journal Name
The Open Civil Engineering Journal
Producing Sustainable Concrete using Nano Recycled Glass
...Show More Authors
Background:

Many tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials.

Objective:

Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength.

Methods:

A nano recycled glass p

... Show More
View Publication Preview PDF
Crossref (12)
Crossref
Publication Date
Wed Jul 14 2021
Journal Name
The Open Civil Engineering Journal
Producing Sustainable Concrete using Nano Recycled Glass
...Show More Authors
Background:

Many tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials.

Objective:

Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength.

Methods:

A nano recycled glass p

... Show More
Scopus (12)
Crossref (12)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Case Studies In Construction Materials
Push-out test of waste sawdust-based steel-concrete – Steel composite sections: Experimental and environmental study
...Show More Authors

View Publication
Crossref (6)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Case Studies In Construction Materials
Push-out test of waste sawdust-based steel-concrete – Steel composite sections: Experimental and environmental study
...Show More Authors

View Publication
Scopus (17)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri May 01 2015
Journal Name
Journal Of Engineering
Resistance to Moisture Damage of Recycled Asphalt Concrete Pavement
...Show More Authors

Recycled asphalt concrete mixture are prepared, artificially aged and processed in the laboratory to maintain the homogeneity of recycled asphalt concrete mixture gradation, and bitumen content. The loose asphalt concrete mix was subjected to cycle of accelerated aging, (short –term aging) and the compacted mix was subjected to (long -term aging) as per Super-pave procedure. Twenty four Specimens were constructed at optimum asphalt content according to Marshall Method. Recycled mixture was prepared from aged asphalt concrete using recycling agent (soft asphalt cement blended with silica fumes) by (1.5%) weight of mixture as recycling agent content. The effect of recycling agent on aging after recycling process behavior

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Sustainable Materials And Technologies
A sustainable pavement concrete using warm mix asphalt and hydrated lime treated recycled concrete aggregates
...Show More Authors

Recently, increasing material prices coupled with more acute environmental awareness and the implementation of regulation has driven a strong movement toward the adoption of sustainable construction technology. In the pavement industry, using low temperature asphalt mixes and recycled concrete aggregate are viewed as effective engineering solutions to address the challenges posed by climate change and sustainable development. However, to date, no research has investigated these two factors simultaneously for pavement material. This paper reports on initial work which attempts to address this shortcoming. At first, a novel treatment method is used to improve the quality of recycled concrete coarse aggregates. Thereafter, the treated recycled

... Show More
View Publication
Crossref (25)
Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Application of Waste Lead Acid Battery Plastic to Produce Lightweight Masonry Units
...Show More Authors

The concrete industry consumes millions of tons of aggregate comprising of natural sands and gravels, each year. In recent years there has been an increasing trend towards using recycled aggregate to save natural resources and to produce lightweight concrete. This study investigates the possibility of using waste plastic as one of the components of lead-acid batteries to replace the fine aggregate by 50 and 70% by volume of concrete masonry units. Compared to the reference concrete mix, results demonstrated that a reduction of approximately 32.5% to 39.6% in the density for replacement of 50% to 70% respectively. At 28 days curing age, the compressive strength was decreased while the water absorption increased by increas

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
Producing Sustainable Roller Compacted Concrete by Using Fine Recycled Concrete Aggregate
...Show More Authors

One-third of the total waste generated in the world is construction and demolition waste. Reducing the life cycle of building materials includes increasing their recycling and reuse by using recycled aggregates. By preventing, the need to open new aggregate quarries and reducing the amount of construction waste dumped into landfills, the use of recycled concrete aggregate in drum compacted concrete protects the environment. Four samples of PRCC were prepared for testing (compressive strength, tensile strength, flexural strength, density, water absorption, porosity) as the reference mix and (10, 15, and 20%) of fine recycled concrete aggregate as a partial replacement for fine natural aggregate by volume. The mix is designed according to

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Wed Aug 12 2020
Journal Name
International Journal On Advanced Science, Engineering And Information Technology
Developing of a 3D Printer to Produce Parts Using Powder Metal
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Dec 07 2024
Journal Name
Infrastructures
Performance Assessment of Eco-Friendly Asphalt Binders Using Natural Asphalt and Waste Engine Oil
...Show More Authors

The depletion of petroleum reserves and increasing environmental concerns have driven the development of eco-friendly asphalt binders. This research investigates the performance of natural asphalt (NA) modified with waste engine oil (WEO) as a sustainable alternative to conventional petroleum asphalt (PA). The study examines NA modified with 10%, 20%, and 30% WEO by the weight of asphalt to identify an optimal blend ratio that enhances the binder’s flexibility and workability while maintaining high-temperature stability. Comprehensive testing was conducted, including penetration, softening point, viscosity, ductility, multiple stress creep recovery (MSCR), linear amplitude sweep (LAS), energy-dispersive X-ray spectroscopy (EDX), F

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref