Several million tons of solid waste are produced each year as a result of construction and demolition activities around the world, and brick waste is one of the most widely wastes. Recently, there has been growing number in studies that conducted on using of recycling brick waste (RBW) to produce environmentally friendly concrete. The use of brick waste (BW) as potential partial cement or aggregate replacement materials is summarized in this review where the performance is discussed in the form of the mechanical strength and properties that related to durability of concrete. It was found that, because the pozzolanic activity of clay brick powder, it can be utilized as substitute for cement in replacement level up to 10%. Whereas, for natural coarse aggregate, recycled aggregate can be used instead of it, but in limited replacement level. Concrete manufacturing from recycled aggregate can give adequate strength and can be suitable for the producing medium or low strength concrete. On the other side, the utilization of fine recycled brick waste as aggregate in the concrete manufacturing provide development of the properties of concrete and it develops the durability of concrete in some cases when used with replacement level up to 10% by the weight of fine aggregate.
This research studies the influence of water source on the compressive strength of high strength concrete. Four types of water source were adopted in both mixing and curing process these are river, tap, well and drainage water (all from Iraq-Diyala governorate). Chemical analysis was carried out for all types of the used water including (pH, total dissolved solids (TDS), Turbidity, chloride, total suspended solid (TSS), and sulfates). Depending on the chemical analysis results, it was found that for all adopted sources the chemical compositions was within the ASTM C 1602/C 1602M-04 limits and can be satisfactorily used in concrete mixtures. Mixture of high strength concrete for compressive strength of (60 MPa) was designed and checked using
... Show MoreRoller compacted concrete (RCC) is a concrete of no slump, no reinforcement, no finishing, and compacted using vibratory roller. When compared with conventional concrete, it contains less water content
when compared to traditional concrete. The RCC technique achieves significant time and cost savings during the construction of concrete. This study demonstrates the preparation of RCC slab of (38 ×38× 10) cm
samples by using roller compactor which is manufactured in local markets. The Hydrated lime additive is used to study the mechanical and physical properties of that RCC slab samples. This investigation is divided
into two main stages: The First stage consists of hammer compaction method with two gradation of aggregate, dense
The performance of asphalt concrete pavement has affected by many factors, the temperature is the most important environmental one which has a large effect on the structural behavior of flexible pavement materials. The main cause of premature failure of pavement is the rutting, Due to the viscoelastic nature of the asphalt cement, rutting is more pronounced in hot climate areas because the viscosity of the asphalt binder which is
inversely related to rutting is significantly reduced with the increase in temperature resulting in a more rut susceptible paving mixtures. The objective of this study is to determine the effect of temperatures variations on the permanent deformation parameters (perm
The aim of this study is to propose mathematical expressions for estimation of the flexural strength of plain concrete members from ultrasonic pulse velocity (UPV) measurements. More than two hundred pieces of precast concrete kerb units were subjected to a scheduled test program. The tests were divided into two categories; non-destructive ultrasonic and bending or rupture tests. For each precast unit, direct and indirect (surface) ultrasonic pulses were subjected to the concrete media to measure their travel velocities. The results of the tests were monitored in two graphs so that two mathematical relationships can be drawn. Direct pulse velocity versus the flexural strength was given in the first relationship while the second equation des
... Show MoreThe main aim of this research paper is investigating the effectiveness and validity of Meso-Scale Approach (MSA) as a modern technique for the modeling of plain concrete beams. Simply supported plain concrete beam was subjected to two-point loading to detect the response in flexural. Experimentally, a concrete mix was designed and prepared to produce three similar standard concrete prisms for flexural testing. The coarse aggregate used in this mix was crushed aggregate. Numerical Finite Element Analysis (FEA) was conducted on the same concrete beam using the meso-scale modeling. The numerical model was constructed to be a bi-phasic material consisting of cement mortar and coarse aggregate. The interface between the two c
... Show MorePhase change material (PCM) is considered as one of the most effective thermal energy storage (TES) systems to balance energy supply and demand. A key challenge in designing efficient PCM-based TES systems lies in the enhancement of heat transmission during phase transition. This study numerically examines the privilege of employing twisted-fin arrays inside a shell-and-tube latent heat storage unit to improve the solidification performance. The presence of twisted fins contributes to the dominating role of heat conduction by their curved shapes, which restricts the role of natural convection but largely aids the overall heat-transfer process during solidification. The heat-discharge
ABSTRACT Purpose: the aim of this in vitro study was to compare the marginal gap and internal fitness between single crowns and the crowns within three-unit bridges of zirconium fabricated by CAD-CAM system. Materials and methods: A standard model from ivoclar company was used as a pattern to simulate three-units bridge (upper first molar and upper first premolar) as abutments used to fabricate stone models, eight single crowns for premolar and eight of three units bridges. Crowns and bridges fabricated by CAD-CAM system were cemented on their respective stone models then sectioned at the mid-point buccolingaully and misiodistaly and examined under stereomicroscope. Result: the marginal gap in premolar crowns and premolar within bridge we
... Show MoreBACKGROUND: Femoral shaft fracture is a common fracture in pediatric age group reaching 62% of all fracture shaft femur in children in spite of rapid union rate and successful conservative treatment but some cases need surgical intervention and one of the methods using plate and screw by the lateral approach. AIM: This study aims to compare functional outcome fixation of mid-shaft femur fracture in children by plate and screws between (subvastus lateralis and transvastus lateralis) regarding infection, union, and limitation of knee movement. PATIENT AND METHOD: The study was done on 30 children who had diaphyseal fracture femur in Al-Kindy Teaching Hospital in period (April 2018–April 2020) with 6 months follow-up, and the pa
... Show MoreAim: The reduction in the amount of marginal bone is the most important demand for the long term success of dental implants. This prospective clinical study was aimed to investigate the marginal bone loss of early loaded SLActive implants with different dimensions and surgical approaches. Materials and methods Fifteen patients aged from 18 to 60 years were divided into 2 groups (flapped and flapless approach) that underwent delayed implant placement protocol with SLActive implants. The marginal bone level was estimated by cone-beam computed tomography during three different periods: preoperatively, 8 weeks after surgery and 24 weeks after loading of the prosthesis. Results: The mean value of marginal bone level was not significantly chan
... Show More