In order to implement the concept of sustainability in the field of construction, it is necessary to find an alternative to the materials that cause pollution by manufacturing, the most important of which is cement. Because factory wastes provide siliceous and aluminous materials and contain calcium such as fly ash and slag that are used in the production of high-strength geopolymer concrete with specifications similar to ordinary concrete, it was necessary for developing this type of concrete that is helping to reduce CO2 (dioxide carbon) in the atmosphere. Therefore, the aim of this study was to study the influence of incorporating various percentages of slag as a replacement for fly ash and the effect of slag on mechanical properties. This paper showed the details of the experimental work that has been undertaken to search and make tests the strength of geopolymer mixtures made of fly ash and then replaced fly ash with slag in different percentages. The geopolymer mixes were prepared using a ground granulated blast-furnace slag (GGBFS) blend and low calcium fly ash class F activated by an alkaline solution. The mixture compositions of fly ash to slag were (0.75:0.25, 0.65:0.35, 0.55:0.45) by weight of cementitious materials respectively and compared with reference mix of conventional concrete with mix proportion 1:1.5:3 (cement: sand: coarse agg.), respectively. The copper fiber was used as recycled material from electricity devices wastes such as (machines, motors, wires, and electronic devices) to enhance the mechanical properties of geopolymer concrete. The heat curing system at 40 oC temperature was used. The results revealed that the mix proportion of 0.45 blast furnace slag and 0.55 fly ash produced the best strength results. It also showed that this mix ratio could provide a solution for the need for heat curing for fly ash-based geopolymer.
Abstract Rasha Hameid Jehad Baghdad University Background: The high reactivity of hydrogen peroxide used in bleaching agents have raised important questions on their potential adverse effects on physical properties of restorative materials. The purpose of this in vitro study was to evaluate the effect of in-office bleaching agents on the microhardness of a new Silorane-based restorative material in comparison to methacrylate-based restorative material. Materials and method: Forty specimens of Filtek™ P90 (3M ESPE,USA) and Filtek™ Supreme XT (3M ESPE, USA) of (8mm diameter and 3m height) were prepared. All specimens were polished with Sof-Lex disks (3M ESPE, USA). All samples were rinsed and stored in incubator 37˚C for 24 ho
... Show MoreThis paper reports an evaluation of the properties of medium-quality concrete incorporating recycled coarse aggregate (RCA). Concrete specimens were prepared with various percentages of the RCA (25%, 50%, 75%, and 100%). The workability, mechanical properties, and durability in terms of abrasion of cured concrete were examined at different ages. The results reveal insignificant differences between the recycled concrete (RC) and reference concrete in terms of the mechanical and durability-related measurements. Meanwhile, the workability of the RC reduced vastly since the replacement of the RCA reached 75% and 100%. The ultrasound pulse velocity (UPV) results greatly depend on the porosity of concrete and the RC exhibited higher poros
... Show MoreNanoparticles of copper sulfide have been prepared by simple reaction between using copper nitrate with different concentrations ratio 0.1, 0.3, and 0.5 mM, thiourea by a simple chemical route. The prepared Nano powders have been deposited onto glass substrates by casting method at 60°C. The structure of the product Nano- films has been studied by x-ray diffraction, where the patterns showed that all the samples have a hexagonal structure of covellite copper sulfide with the average crystalline sizes 14.07- 16.51 nm. The morphology has been examined by atomic force microscopy, and field emission scan electron microscopy. The AFM images showed particles with almost spherical and rod shapes with average diameter sizes of 49.11- 90.64 nm.
... Show MoreIn this study, the effects of blending the un-branched acrylate polymer known as Poly (n-decyl acrylate), and the branched acrylate polymer known as Poly (iso-octyl acrylate), on the viscosity index (VI), and the pour point of the Iraqi base stocks 40, and 60 respectively, were investigated. Toluene was used as a carrier solvent for both polymer types. The improvement level of oils (VI, & pour point) gained by blending the oil with the acrylate derived polymers was compared with the values of (VI, and pour point) gained by blending the oil with a commercial viscosity index, and pour point improver. The commercial lubricant additive was purchased and used by Al-Daura Refineries. It consisted of an un-known olefin copolymer dissolved i
... Show MoreIn this work, the optical properties of Cu2S with different thickness
(1400, 2400, 4400) Ǻ have been prepared by chemical spray pyrolys
is method onto clean glass substrate heated at 283 oC ±2. The effect
of thickness on the optical properties of Cu2S has been studied. It
was found that the optical properties of the electronic transitions on
fundamental absorption edge were direct allowed and the value of the
optical energy gap of Cu2S (Eg) for direct transition decreased from
(2.4-2.1) eV with increasing of the thickness from (1400 - 4400)Ǻ
respectively. Also it was found that the absorption coefficient is
increased with increasing of thicknesses. The optical constants such<
Background: Polymer surfaces usually present problems in bonding and finishing due to their low hydrophilicity. The aim of this study is to investigate the effect of plasma treatment with the use of two types of gases (oxygen and argon) on surface roughness, and chemical surface properties of acrylic resin denture base polymer material. Materials and Methods: Three heat cured acrylic resin specimens of (2*8*30 mm) dimensions were prepared for each test carried out in this study. Two tests were conducted, surface roughness test and chemical surface analysis test. Results: Application of plasma treatment increased surface roughness for both oxygen and argon plasma treated acrylic resin specimen groups compared with control untreated group,
... Show MoreCuInSe2 (CIS)thin films have been prepared by use vacuum thermal evaporation technique, of 750 nm thickness, with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant)by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can made to control it is wide applications as an optoelectronic devices and photovoltaic applications.
EP/ metal composites were prepared as adhesives between two steel rods. Epoxy resin (EP) was used as a matrix with metal as fillers (Al, Cu, Fe,).
The preparation method for tensile adhesion tests includes two steel rods with adhesive composites between the rods to measure adhesion strength Sad and adhesion toughness Gad.
Results of tensile adhesion tests show that EP/ metals composite have maximum strength Sad for certain weight percentage of metals 2.95 and 9MPa at 10% for EP/Al and EP/Cu composite and 8.2MPa at 40% for EP/Fe composites