Preferred Language
Articles
/
joe-1425
Influence of Using Various Percentages of Slag on Mechanical Properties of Fly Ash-based Geopolymer Concrete
...Show More Authors

In order to implement the concept of sustainability in the field of construction, it is necessary to find an alternative to the materials that cause pollution by manufacturing, the most important of which is cement. Because factory wastes provide siliceous and aluminous materials and contain calcium such as fly ash and slag that are used in the production of high-strength geopolymer concrete with specifications similar to ordinary concrete, it was necessary for developing this type of concrete that is helping to reduce CO2 (dioxide carbon) in the atmosphere. Therefore, the aim of this study was to study the influence of incorporating various percentages of slag as a replacement for fly ash and the effect of slag on mechanical properties. This paper showed the details of the experimental work that has been undertaken to search and make tests the strength of geopolymer mixtures made of fly ash and then replaced fly ash with slag in different percentages. The geopolymer mixes were prepared using a ground granulated blast-furnace slag (GGBFS) blend and low calcium fly ash class F activated by an alkaline solution. The mixture compositions of fly ash to slag were (0.75:0.25, 0.65:0.35, 0.55:0.45) by weight of cementitious materials respectively and compared with reference mix of conventional concrete with mix proportion 1:1.5:3 (cement: sand: coarse agg.), respectively. The copper fiber was used as recycled material from electricity devices wastes such as (machines, motors, wires, and electronic devices) to enhance the mechanical properties of geopolymer concrete. The heat curing system at 40 oC temperature was used. The results revealed that the mix proportion of 0.45 blast furnace slag and 0.55 fly ash produced the best strength results. It also showed that this mix ratio could provide a solution for the need for heat curing for fly ash-based geopolymer.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Sep 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Effect of Additives on Rheological Properties of Invert Emulsions
...Show More Authors

This research deals with study of the effect of additives on rheological properties (yield point, plastic viscosity ,and apparent viscosity) of emulsions. Twenty seven emulsion samples were prepared; all emulsions in this investigation are invert emulsions when water droplets are dispersed in diesel oil. The resulting emulsions are called water-in-oil (W/O) emulsions. The rheological properties of these emulsions were investigated using a couett coaxial cylinder rotational viscometer (Fann-VG model 35 A), by measuring shear stress versus shear rate. It was found that the effect of additives on rheological properties of emulsions as follow: the increase in the concentration of asphaltic material tends to increase the rheological propertie

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 30 2018
Journal Name
Journal Of Engineering
Effect of bentonite addition on some properties of porcelain
...Show More Authors

Porcelain is one of the most important ceramic materials with a wide range of traditional and technical applications. Since most mixtures of porcelain have a high sintering temperature, bentonite has been added in this research to improve the characteristics of sintering and burning. The porcelain mixture consisted of the following Iraqi raw materials: 30% wt kaolin, 30 wt% non-plastic clay (grog), 10% wt sodium feldspar, 10 wt% potassium feldspar and 20 wt% flint. After the mechanical mixing process and transfer the powder mixture to the slurry by adding distilled water, then different weight percentage of the sodium bentonite(0, 2.5, 5, 7.5 and 10) wt% was added. The specimens were prepared by using the solid casting m

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Engineering
Effect of Variation of Degree of Saturation with depth on Soil–Concrete Pile Interface in Clayey Soil
...Show More Authors

Bearing capacity of a concrete pile in fine grained cohesive soils is affected by the degree of saturation of the surrounding soil through the contribution of the matric suction. In addition, the embedded depth and the roughness of the concrete pile surface (expressed as British Pendulum Number BPN) also have their contribution to the shear strength of the concrete pile, consequently its bearing capacity. Herein, relationships among degree of saturation, pile depth, and surface roughness, were proposed as a mathematical model expressed as an equation where the shear strength of a pile can be predicted in terms of degree of saturation, depth, and BPN. Rel

... Show More
View Publication Preview PDF
Publication Date
Wed May 01 2019
Journal Name
Thin Solid Films
Studies of annealing impact on the morphological, opto-dielectric and mechanical behaviors of molybdenum-doped CrN coatings
...Show More Authors

View Publication
Scopus (9)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
The effects of silica addition on the structural, electrical and mechanical characteristics of MgAl2O4 spinel ceramic phase
...Show More Authors

The ceramic compound Mg1-xSixAl2O4 (x= 0, 0.1, 0.2, 0.3, 0.4) was prepared from nano powder of Al2O3 and MgO doped with Nano powder of SiO2 at different molar ratios. The specimens were prepared by standard chemical solid reaction technique and sintered at 1450 oC. Structure of the specimens was analyzed by using X-ray diffraction (XRD). The X-ray patterns of the specimens showed the formation of pure simple cubic spinel structure MgAl2O4 phase with space group of ̅ . The average grain size and surface topology were studied by atomic force microscopy. The results showed that the average grain size was about 73-90 nm. The DC electrical properties of the specimen were measured. The apparent density was found to increase and the porosity a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Journal Of Engineering
Mechanical Integrity of Printed Circuit Heat Exchanger
...Show More Authors

The printed circuit heat exchanger is a plate type heat exchanger with a high performance and compact size. Heat exchangers such as this need a unique form of bonding and other techniques to be used in their construction. In this study, the process of joining plates, diffusion bonding, was performed and studied. A special furnace was manufactured for bonding purposes. The bonding process of copper metal was carried out under specific conditions of a high temperature up to 700 oC, high pressure of 3.45 MPa, and in an inert environment (Argon gas) to make tensile samples. The tensile samples are cylindrical shapes containing groves representing the flow channels in the printed circuit heat exchanger and checking their tensile st

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 28 2023
Journal Name
Journal Of Advanced Pharmaceutical Technology & Research
Development of a spectrophotometric analytical approach for the measurement of cefdinir in various pharmaceuticals
...Show More Authors

View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Oct 11 2017
Journal Name
International Journal Of Science And Research
Effect of Elevated Temperature on the Compressive Strength of Reactive Powder Concrete (RPC) Containing Polyvinyl Chloride (PVC)
...Show More Authors

Fire is the most sever environmental condition affecting on concrete structures, thus investigating for fire safety in structural concrete is important for building construction. The slow heat transfer and strength loss enables concrete to be effective for fire resistance. Concrete structures withstand when exposed to fire according to: their thermal properties, rate of heating, characteristic properties of concrete mixes and their composition and on the duration of fire, and concerned as thermal property with other factors such as loss of mass which affected by aggregate type, moisture content, and composition of concrete mix. The present research goal is to study the effect of rising temperature on the compressive strength of the rea

... Show More
Publication Date
Sun Oct 01 2017
Journal Name
International Journal Of Science And Research (ijsr)
Effect of Elevated Temperature on the Compressive Strength of Reactive Powder Concrete (RPC) Containing Polyvinyl Chloride (PVC)
...Show More Authors

Fire is the most sever environmental condition affecting on concrete structures, thus investigating for fire safet, IJSR, Call for Papers, Online Journal

View Publication
Publication Date
Thu Aug 18 2022
Journal Name
Sustainability
A Sustainable Cold Mix Asphalt Mixture Comprising Paper Sludge Ash and Cement Kiln Dust
...Show More Authors

Concerns about the environment, the cost of energy, and safety mean that low-energy cold-mix asphalt materials are very interesting as a potential replacement for present-day hot mix asphalt. The main disadvantage of cold bituminous emulsion mixtures is their poor early life strength, meaning they require a long time to achieve mature strength. This research work aims to study the protentional utilization of waste and by-product materials as a filler in cold emulsion mixtures with mechanical properties comparable to those of traditional hot mix asphalt. Accordingly, cold mix asphalt was prepared to utilize paper sludge ash (PSA) and cement kiln dust (CKD) as a substitution for conventional mineral filler with percentages ranging fro

... Show More
View Publication
Scopus (23)
Crossref (22)
Scopus Clarivate Crossref