In order to implement the concept of sustainability in the field of construction, it is necessary to find an alternative to the materials that cause pollution by manufacturing, the most important of which is cement. Because factory wastes provide siliceous and aluminous materials and contain calcium such as fly ash and slag that are used in the production of high-strength geopolymer concrete with specifications similar to ordinary concrete, it was necessary for developing this type of concrete that is helping to reduce CO2 (dioxide carbon) in the atmosphere. Therefore, the aim of this study was to study the influence of incorporating various percentages of slag as a replacement for fly ash and the effect of slag on mechanical properties. This paper showed the details of the experimental work that has been undertaken to search and make tests the strength of geopolymer mixtures made of fly ash and then replaced fly ash with slag in different percentages. The geopolymer mixes were prepared using a ground granulated blast-furnace slag (GGBFS) blend and low calcium fly ash class F activated by an alkaline solution. The mixture compositions of fly ash to slag were (0.75:0.25, 0.65:0.35, 0.55:0.45) by weight of cementitious materials respectively and compared with reference mix of conventional concrete with mix proportion 1:1.5:3 (cement: sand: coarse agg.), respectively. The copper fiber was used as recycled material from electricity devices wastes such as (machines, motors, wires, and electronic devices) to enhance the mechanical properties of geopolymer concrete. The heat curing system at 40 oC temperature was used. The results revealed that the mix proportion of 0.45 blast furnace slag and 0.55 fly ash produced the best strength results. It also showed that this mix ratio could provide a solution for the need for heat curing for fly ash-based geopolymer.
Portland cement concrete is the most commonly used construction material in the world for decades. However, the searches in concrete technology are remaining growing to meet particular properties related to its strength, durability, and sustainability issue. Thus, several types of concrete have been developed to enhance concrete performance. Most of the modern concrete types have to contain supplementary cementitious materials (SCMs) as a partial replacement of cement. These materials are either by-products of waste such as fly ash, slag, rice husk ash, and silica fume or from a geological resource like natural pozzolans and metakaolin (MK). Ideally, the utilization of SCMs will enhance the concrete performance, minimize
... Show MoreIn the recent years, some of the newly constructed asphalt concrete pavements in Baghdad as well as other cities across Iraq showed premature failures with consequential negative impact on both roadway safety and economy. Frequently, load associated mode of failure (rutting and fatigue) as well as, occasionally, moisture damage in some poorly drained sections are the main failure types found in those newly constructed road.
In this research, hydrated lime was introduced into asphalt concrete mixtures of wearing course in two methods. The first one was the addition of dry lime on dry aggregate and the second one was the addition of dry lime on saturated surface dry aggregate moisturized by 2.0 to 3.0 percent of wa
... Show MoreThe aim of this work is studying the binary system ??'??? Ni?)with two ratios (y=36,80) by using casting method for preparing the samples.Magnetic and Mechanical properties have been studidt different httrea^nttem^rature.All the alloys were found a ferromagnetic behavior and sensitive to the heat treatment. Best properties were found at the heat treatment 1100 C°.A significant different results were found above 1100C° for lower magnetic and mechanical values. This is possibly due to the change on the degree of magnetic moment orders, in which most of the moments are started to remove from coupled ferromagnetically.?
In this study, composite materials were prepared using unsaturated polyester resin as binder with two types of fillers (sawdust and chopped reeds). The molding method is used to prepare sheets of UPE / sawdust composite and UPE / chopped reeds composite. The mechanical properties were studied including flexural strength and Young's modulus for the samples at normal conditions (N.C). The Commercial wood, UPE and its composite samples were immersed in water for about 30 days to find the weight gain (Mt%) of water for the samples, also to find the effect of water on their flexural strength and Young's modulus. The results showed that the samples of UPE / chopped reeds composite gained highest values of flexural strength (24.
... Show MoreBackground: Polymers are very rarely used in their form. These modifications are carried out in order to improve the properties of polymers.Recently silver have been used successfully as antimicrobial (medical and dental) biomaterials that can prevent caries and infection of implants Purposes: The aim of the present in vitro study is to evaluate the effect of addition of silver nitrate to acrylic resin in different concentrationsthrough several tests part of these are: The effect of this additive on impact strength, transverse strength, and tensile strength of AgNO3 – loaded resin, and to assess any effect of addition of silver nitrate on coloration of acrylic resin. Materials and methods: Different concentrations of silver nitrate
... Show MoreIn this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal
... Show MorePreparation of epoxy/ TiO2 and epoxy/ Al2O3 nanocomposites is studed and investigated in this paper. The nano composites are processed by different nano fillers concentrations (0, 0.01, 0.02 ,0.03, 0.04 ,0.05 ,0.07 and 0.1 wt%). The particles sized of TiO2,Al2O3 are about 20–50 nm.Epoxy resin and nano composites containing different shape nano fillers of (TiO2:Al2O3 composites),are shear mixing with ratio 1 to 1,with different nano hybrid fillers concentrations( 0.025 ,0.0 5 ,0.15 ,0.2, and 0.25 wt%) to Preparation of epoxy/ TiO2- Al2O3 hybrid composites. The mechanical properties of nanocomposites such as bending ,wearing, and fatigue are investigated as mechanical properties.
The influence of pre- shot peening and welding parameters on mechanical and metallurgical properties of dissimilar and similar aluminum alloys AA2024-T3 and AA6061-T6 joints using friction stir welding have been studied. In this work, numbers of plates were equipped from sheet alloys in dimensions (150*50*6) mm then some of them were exposed to shot peening process before friction stir welding using steel ball having diameter 1.25 mm for period of 15 minutes. FSW joints were manufactured from plates at three welding speeds (28, 40, 56 mm/min) and welding speed 40mm/min was chosen at a rotating speed of 1400 rpm for welding the dissimilar pre- shot plates. Tow joints were made at rotational speed of 1000 rpm and welding speed of 40m/min f
... Show More