In order to implement the concept of sustainability in the field of construction, it is necessary to find an alternative to the materials that cause pollution by manufacturing, the most important of which is cement. Because factory wastes provide siliceous and aluminous materials and contain calcium such as fly ash and slag that are used in the production of high-strength geopolymer concrete with specifications similar to ordinary concrete, it was necessary for developing this type of concrete that is helping to reduce CO2 (dioxide carbon) in the atmosphere. Therefore, the aim of this study was to study the influence of incorporating various percentages of slag as a replacement for fly ash and the effect of slag on mechanical properties. This paper showed the details of the experimental work that has been undertaken to search and make tests the strength of geopolymer mixtures made of fly ash and then replaced fly ash with slag in different percentages. The geopolymer mixes were prepared using a ground granulated blast-furnace slag (GGBFS) blend and low calcium fly ash class F activated by an alkaline solution. The mixture compositions of fly ash to slag were (0.75:0.25, 0.65:0.35, 0.55:0.45) by weight of cementitious materials respectively and compared with reference mix of conventional concrete with mix proportion 1:1.5:3 (cement: sand: coarse agg.), respectively. The copper fiber was used as recycled material from electricity devices wastes such as (machines, motors, wires, and electronic devices) to enhance the mechanical properties of geopolymer concrete. The heat curing system at 40 oC temperature was used. The results revealed that the mix proportion of 0.45 blast furnace slag and 0.55 fly ash produced the best strength results. It also showed that this mix ratio could provide a solution for the need for heat curing for fly ash-based geopolymer.
The primary objective of this paper is to improve a biometric authentication and classification model using the ear as a distinct part of the face since it is unchanged with time and unaffected by facial expressions. The proposed model is a new scenario for enhancing ear recognition accuracy via modifying the AdaBoost algorithm to optimize adaptive learning. To overcome the limitation of image illumination, occlusion, and problems of image registration, the Scale-invariant feature transform technique was used to extract features. Various consecutive phases were used to improve classification accuracy. These phases are image acquisition, preprocessing, filtering, smoothing, and feature extraction. To assess the proposed
... Show MoreThis paper presents the electrical behavior of the top contact/ bottom gate of an organic field-effect transistor (OFET) utilizing Pentacene as a semiconductor layer with two distinctive gate dielectric materials Polyvinylpyrrolidone (PVP) and Zirconium oxide (ZrO2) were chosen. The influence of the monolayer and bilayer gates insulator on OFET performance was investigated. MATLAB software was used to simulate and determine the electrical characteristics of a device. The output and transfer characteristics were studied for ZrO2, PVP and ZrO2/PVP as an organic gate insulator layer. Both characteristics show a high drain current at the gate dielectric ZrO2/PVP equal to -0.0031A and -0.0015A for output and transfer characteristics respectively
... Show MoreThe main aim of this research paper is investigating the effectiveness and validity of Meso-Scale Approach (MSA) as a modern technique for the modeling of plain concrete beams. Simply supported plain concrete beam was subjected to two-point loading to detect the response in flexural. Experimentally, a concrete mix was designed and prepared to produce three similar standard concrete prisms for flexural testing. The coarse aggregate used in this mix was crushed aggregate. Numerical Finite Element Analysis (FEA) was conducted on the same concrete beam using the meso-scale modeling. The numerical model was constructed to be a bi-phasic material consisting of cement mortar and coarse aggregate. The interface between the two c
... Show MoreIn the present study, a powder mixture of elements Ti and Ni was mechanically alloyed in a high energy ball mill. Microstructure of the nanosized amorphous milled product in different stages of milling has been characterized by X- ray diffraction, scanning electron microscopy and differential thermal analysis. We found that time of mechanical alloying is more significant to convert all crystalline structure to the amorphous phase. Nanocrystalline phase was achieved as a result of the mechanical alloying process. The results also indicates that the phase transformation and the grain size occurs in these alloys are controlled by ball milling time
In this study, epoxy was used as a matrix for composite materials, with E-glass fiber, jute and PVC fiber which was woven roving fiber, as reinforcement with volume fraction (Vf= 30%). There are two of prepared types of epoxy non reinforced, epoxy reinforced with E-glass, jute and PVC fibers including study of mechanical tests (Impact test, Bending test) different temperature and thermal conductivity and calculating the temperatures coefficient at different temperature. Results show that elastic modulus at rate values decrease to the increase of temperature and the impact strength, impact energy and thermal conductivity increase with increase temperature.
Preparation of epoxy/MgO and epoxy/SiO2 nanocomposites is
studding. The nano composites were processed by different nano
fillers concentrations (0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.07 and
0.1 wt%). Epoxy resin and nanocomposites containing different
shape nano fillers of (MgO:SiO2 composites), are shear mixing with
ratio 1:1,with different nano hybrid fillers concentrations (0.025,
0.05, 0.1, 0.15, 0.2 and 0.25 wt%) to preparation of epoxy/(MgOSiO2)
hybrid nanocomposites. Experimental tests results indicate that
the composite materials have significantly higher modulus of
elasticity than the matrix material but the hybrid nanocomposites
have lower modulus of elasticity. The wear rate was decreased in
nanoc
In this study, the mechanical properties of an epoxy and unidirectional woven carbon with fiberglass composite were experimentally investigated. When preparing the composite samples, American Society for Testing and Materials (ASTM)standard was used. Tensile, impact and flexural test were conducted to investigate the mechanical properties of the new produced epoxy Unidirectional Woven Carbon and Epoxy Fiberglass composites. The outcome showed that the strength of the produced samples increased with the increase in the number of unidirectional woven carbon layers added. Two methods were utilized: (1) woven carbon composite with glass fiber (2) woven carbon composite). The two methods of composite were compared with each other. The resul
... Show MoreRecycling process presents a sustainable pavement by using the old materials that could be milled, mixed with virgin materials and recycling agents to produce recycled mixtures. The objective of this study is to evaluate the impact of water on recycled asphalt concrete mixtures, and the effect of the inclusion of old materials into recycled mixtures on the resistance of water damage. A total of 54 Marshall Specimens and 54 compressive strength specimens of (virgin, recycled, and aged asphalt concrete mixtures) had been prepared, and subjected to Tensile Strength Ratio test, and Index of Retained Strength test. Four types of recycling agents (used oil, oil + crumb rubber, soft grade asphalt cement, and asphalt cement + Su
... Show More