Preferred Language
Articles
/
joe-141
Application of Artificial Neural Network for Predicting Iron Concentration in the Location of Al-Wahda Water Treatment Plant in Baghdad City
...Show More Authors

Iron is one of the abundant elements on earth that is an essential element for humans and may be a troublesome element in water supplies.  In this research an AAN model was developed to predict iron concentrations in the location of Al- Wahda water treatment plant in Baghdad city by water quality assessment of iron concentrations at seven WTPs up stream Tigris River. SPSS software was used to build the ANN model. The input data were iron concentrations in the raw water for the period 2004-2011. The results indicated the best model predicted Iron concentrations at Al-Wahda WTP with a coefficient of determination 0.9142. The model used one hidden layer with two nodes and the testing error was 0.834. The ANN model could be used to predict future iron concentrations as the results from the verification of the ANN model for years 2012 and 2013 indicated good accuracy with a coefficient of determination R2 = 0.8965.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 30 2015
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
Study the distribution of Fungi and Bacteria in AL- Yusifia River– South of Baghdad City.: Study the distribution of Fungi and Bacteria in AL- Yusifia River– South of Baghdad City.
...Show More Authors

Al-Yusifia river was assessed at three sampling stations with study period from Autumn 2010 to the end of Summer 2011. The present investigation was carried out on diversity of fungi and bacteria from Al-Yusifia river, Baghdad city. During the study, a total of 12 fungal genus and 6 bacterial genus were isolated during the year seasons. The dominant fungus at the three stations were Penicillium sp., then Rhizopus and Trichophyton   megninii while the dominant bacteria was Escherichia coli and Klebsiella sp.

            The higher

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Prediction Using Artificial Neural Network of Bed Porosity and Solid Holdup in Viscous 3-Phase Inverse Fluidization
...Show More Authors

In the present investigation, bed porosity and solid holdup in viscous three-phase inverse fluidized bed (TPIFB) are determined for aqueous solutions of carboxy methyl cellulose (CMC) system using polyethylene and polypropylene as  a particles with low-density and diameter (5 mm) in a (9.2 cm) inner diameter with height (200 cm) of vertical perspex column. The effectiveness of gas velocity Ug , liquid velocity UL, liquid viscosity μL, and particle density ρs on bed porosity BP and solid holdups εg were determined. The bed porosity increases with "increasing gas velocity", "liquid velocity", and "liquid viscosity". Solid holdup decreases with increasing gas, liquid

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 03 2019
Journal Name
International Journal Of Civil Engineering And Technology (ijciet)
Condition Prediction Models of Deteriorated Trunk Sewer Using Multinomial Logistic Regression and Artificial Neural Network
...Show More Authors

Sewer systems are used to convey sewage and/or storm water to sewage treatment plants for disposal by a network of buried sewer pipes, gutters, manholes and pits. Unfortunately, the sewer pipe deteriorates with time leading to the collapsing of the pipe with traffic disruption or clogging of the pipe causing flooding and environmental pollution. Thus, the management and maintenance of the buried pipes are important tasks that require information about the changes of the current and future sewer pipes conditions. In this research, the study was carried on in Baghdad, Iraq and two deteriorations model's multinomial logistic regression and neural network deterioration model NNDM are used to predict sewers future conditions. The results of the

... Show More
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Optimum Dimensions of Hydraulic Structures and Foundation Using Genetic Algorithm coupled with Artificial Neural Network
...Show More Authors

      A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs lengths and their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy. The optimization carried out is subjected to constraints that ensure a safe structure aga

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
Preservation of Required Chlorine Concentration in Baghdad Water Supply Networks using On-Site Chlorine Injection
...Show More Authors

The chlorine concentration variation in Baghdad water networks was studied. The
chlorine data were collected from Mayoralty of Baghdad and Ministry of Environment
(MOE) for the networks for both sides of the city Karkh and Rasafa for (2008-2009). The
study of these data indicates that there are no systematic testing program .Classified GIS
maps showed that the areas far from the treatment plants have almost always low
chlorine concentration .This indicates that the problem of the low chlorine concentration
in the far areas is due to cracks of pipe along the conveyance path ,as expected. The area's
most frequently have low concentration are Al-sadir,Al-Kadhimya, and Al-Amiria . It
was found also that the chlorine c

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Aug 05 2015
Journal Name
International Journal Of Current Engineering And Technology
Water Quality Index Assessment using GIS Case study: Tigris River in Baghdad City
...Show More Authors

In this study water quality index (WQI) was calculated to classify the flowing water in the Tigris River in Baghdad city. GIS was used to develop colored water quality maps indicating the classification of the river for drinking water purposes. Water quality parameters including: Turbidity, pH, Alkalinity, Total hardness, Calcium, Magnesium, Iron, Chloride, Sulfate, Nitrite, Nitrate, Ammonia, Orthophosphate and Total dissolved solids were used for WQI determination. These parameters were recorded at the intakes of the WTPs in Baghdad for the period 2004 to 2011. The results from the annual average WQI analysis classified the Tigris River very poor to polluted at the north of Baghdad (Alkarkh WTP) while it was very poor to very polluted in t

... Show More
Publication Date
Wed Dec 01 2021
Journal Name
Iraqi Journal Of Physics
Evaluate the Distribution of Heavy Elements that Dissolved in Ground Water Using IDW in AL-Wafa City, Al-Ramadi,Iraq
...Show More Authors

Groundwater can be assessed by studying water wells. This study was conducted in Al-Wafa District, Anbar Governorate, Iraq. The water samples were collected from 24 different wells in the study area, in January 2021. A laboratory examination of the samples was conducted. Geographical information systems technique was relied on to determine the values of polluting elements in the wells. The chemical elements that were measured were [cadmium, lead, cobalt and chromium]. The output of this research were planned to be spatial maps that show the distribution of the elements with respect to their concentrations. The results show a variation in the heavy elements concentrations at the studied area groundwater. The samples show different values

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Https://www.researchgate.net/journal/university-of-baghdad-engineering-journal-1726-4073
Hazard analysis in drinking water plant
...Show More Authors

Source, sedimentation, coagulation, flocculation, filter, and tank are parts of a water treatment plant. As a result, some issues threaten the process and affect the drinking water quality, which is required to provide clean drinking water according to special standards and international and local specifications, determined by laboratory results from physical, chemical, and biological tests. In order to keep the water safe for drinking, it is necessary to analyze the risks and assess the pollution that occurs in every part of the plant. The method is carried out in a common way, which is monitoring through laboratory tests, and it is among the standards of the global and local health regulators

Crossref
Publication Date
Wed Jul 01 2015
Journal Name
Journal Of Engineering
Spiking Neural Network in Precision Agriculture
...Show More Authors

In this paper, precision agriculture system is introduced based on Wireless Sensor Network (WSN). Soil moisture considered one of environment factors that effect on crop. The period of irrigation must be monitored. Neural network capable of learning the behavior of the agricultural soil in absence of mathematical model. This paper introduced modified type of neural network that is known as Spiking Neural Network (SNN). In this work, the precision agriculture system  is modeled, contains two SNNs which have been identified off-line based on logged data, one of these SNNs represents the monitor that located at sink where the period of irrigation is calculated and the other represents the soil. In addition, to reduce p

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 01 2021
Journal Name
Complexity
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem
...Show More Authors

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay

... Show More
View Publication
Scopus (20)
Crossref (15)
Scopus Clarivate Crossref