Preferred Language
Articles
/
joe-1413
Gas Adsorption and Storage at Metal-Organic Frameworks
...Show More Authors

Dry gas is considered one of the most environmentally friendly sources of energy. As a result, developing an efficient strategy for storing this gas has become essential. In this work, MOF-199 was synthesized and characterized in order to investigate the MOF-199 in dry gas adsorption using a built-in volumetric system (methane, ethane, and propane from Basrah gas company). The MOF-199 (metal organic framework) was synthesized using the solvothermal method at 373K for 24h, and then it was characterized. The dry gas adsorption on MOF-199 was studied under various conditions (adsorbent dosage, contact time, temperature, and pressure). The isothermal adsorption of the dry gas had been studied on MOF-199 using two types of models: Freundlich and Langmuir. The results of the isothermal adsorption shown corresponded to the Freundlich model with a correlation coefficient (R²) of 0.9426. Also, the rate of adsorption kinetic of the first and second-order was studied, and the results showed that the reaction rate was second-order.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Nov 01 2010
Journal Name
Iraqi Journal Of Physics
Streams and plasma parameters experimental studies in He-CO gas mixtures
...Show More Authors

DC glow discharges were generated between a thin cylindrical anode and a flat cathode, streamers are thought to propagate by photo-ionization; the parameters of photo-ionization depend on the He: CO ratio. Therefore we study streamers in He ( 90%, 80% and 70% ) with (10%, 20% and 30%) CO respectively. The streamer diameter is essentially the change by increase for similar voltage and pressure in all He-CO mixtures.

View Publication Preview PDF
Publication Date
Thu Jun 01 2006
Journal Name
Journal Of Engineering
PHYSICAL ADSORPTION OF REFORMING CATALYST BY NITROGEN
...Show More Authors

Physical adsorption by nitrogen gas was studied on seven commercial platinum reforming catalysts (RG-402, RG-412, RG-432, RG-451, RG 422,RG-482, PS-10), four prepared platinum catalysts (0.1%Pt/alumina, 0.2 %Pt/alumina, 0.45 %Pt/alumina and 0.55% Pt/alumina), and -alumina support. Physical adsorption was carried out by using Accelerated Surface Area and Porosimetry (ASAP 2400 device) at 77 K . The results indicate that the surface area in genaral decreases with increasing platinum percentage, high platinum loaded (0.45% and 0.55%) it was found that the percent increasing in surface area was lower than those obtained for low platinum loaded catalysts , and at very higher platinum loading 0.6 %Pt , some reduction in surface area was

... Show More
Preview PDF
Publication Date
Wed Feb 27 2019
Journal Name
Journal Of Nano Research
A Specific NH<sub>3</sub> Gas Sensor of a Thick MWCNTs-OH Network for Detection at Room Temperature
...Show More Authors

NH3 gas sensor was fabricated based on deposited of Functionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) suspension on filter paper substrates using suspension filtration method. The structural, morphological and optical properties of the MWCNTs film were characterized by XRD, AFM and FTIR techniques. XRD measurement confirmed that the structure of MWCNTs is not affected by the preparation method. The AFM images reflected highly ordered network in the form of a mat. The functional groups and types of bonding have appeared in the FTIR spectra. The fingerprint (C-C stretch) of MWCNTs appears in 1365 cm-1, and the backbone of CNTs observed at 1645 cm-1. A homemade sensi

... Show More
View Publication
Scopus (16)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Boron Removal by Adsorption onto Different Oxides
...Show More Authors

A research was conducted to determine the feasibility of using adsorption process to remove boron from aqueous solutions using batch technique. Three adsorbent materials; magnesium, aluminum and iron oxide were investigated to find their abilities for boron removal. The effects of operational parameters on boron removal efficiency for each material were determined.
The experimental results revealed that maximum boron removal was achieved at pH 9.5 for magnesium oxide and 8 for aluminum and iron oxide. The percentage of boron adsorbed onto magnesium,aluminum and iron oxide reaches up to 90, 42.5 and 41.5% respectively under appropriate conditions. Boron concentration in effluent water after adsorption via magnesium oxide comply with th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 13 2018
Journal Name
Journal Of Engineering
Comparison Between ESP and Gas Lift in Buzurgan Oil field/Iraq
...Show More Authors

Buzurgan oil Field which is located in south of Iraq has been producing oil for five decades that caused production to drop in many oil wells. This paper provides a technical and economical comparison between the ESP and gas lift in one oil well (Bu-16) to help enhancing production and maximize revenue. Prosper software was used to build, match and design the artificial lift method for the selected well, also to predict the well behavior at different water cut values and its effect on artificial lift method efficiency. The validity of software model was confirmed by matching, where the error difference value between actual and calculated data was (-1.77%).

The ESP results showed the durability of ESP regarding th

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Materials Science And Chemical Engineering
Extraction and Modelling of Oil from Eucalyptus camadulensis by Organic Solvent
...Show More Authors

This work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camadulensis leaves) by organic solvents. the effects of the main operating parameters were studied; type of solvent (n-hexane and ethanol), time to reach equilibrium, the temperature (45°C to 65°C) for n-hexane and (45°C to 75°C) for ethanol, solvent to solid ratio (5:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm) and the particle size (0.5 to 2.5 cm) of fresh leaves to find the best processing conditions for the achieving maximum oil yield. The concentration of eucalyptus oil in solvent was measured by using UV-spectrophotometer. The results (for n-hexane) showed that the agitation speed of 900 rpm, temperature 65°C with solvent to soli

... Show More
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Comparative Study for Organic and Inorganic Draw Solutions in Forward Osmosis
...Show More Authors

The present work aims to study forward osmosis process using different kinds of draw solutions and membranes. Three types of draw solutions (sodium chloride, sodium formate, and sodium acetate) were used in forward osmosis process to evaluate their effectiveness with respect to water flux and reverse salt flux. Experiments conducted in a laboratory-scale forward osmosis (FO) unit in cross flow flat sheet membrane cell.  Three types of membranes (Thin film composite (TFC), Cellulose acetate (CA), and Cellulose triacetate (CTA)) were used to determine the water flux under osmotic pressure as a driving force. The effect of temperature, draw solution concentration, feed and draw solution flow rate, and membrane types, were studied with

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Thu Jun 15 2023
Journal Name
International Journal Of Nanoscience
Fabrication and Enhancement of Organic Photodetectors Based on Iron Phthalocyanine Films
...Show More Authors

Iron–phthalocyanine (FePc) organic photoconductive detector was fabricated using pulsed laser deposition (PLD) technique to work in ultraviolet (UV) and visible regions. The organic semiconductor material (iron phthalocyanine) was deposited on n-type silicon wafer (Si) substrates at different thicknesses (100, 200 and 300) nm. FePc organic photoconductive detector has been improved by two methods: the first is to manufacture the detector on PSi substrates, and the second is by coating the detector with polyamide–nylon polymer to enhance the photoconductivity of the FePc detector. The current–voltage (I–V) characteristics, responsivity, photocurrent gain, response time and the quantum efficiency of the fabricated photoconduc

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Oct 31 2021
Journal Name
Iraqi Geological Journal
Estimate Gas Initially in Place of Tight Gas Reservoirs Based on Developed Methodology of Dynamic Material Balance Technique
...Show More Authors

With growing global demand for hydrocarbons and decreasing conventional reserves, the gas industry is shifting its focus in the direction of unconventional reservoirs. Tight gas reservoirs have typically been deemed uneconomical due to their low permeability which is understood to be below 0.1mD, requiring advanced drilling techniques and stimulation to enhance hydrocarbons. However, the first step in determining the economic viability of the reservoir is to see how much gas is initially in place. Numerical simulation has been regarded across the industry as the most accurate form of gas estimation, however, is extremely costly and time consuming. The aim of this study is to provide a framework for a simple analytical method to esti

... Show More
Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
Synthesis and Fabrication of In2O3: CdO Nanoparticles for NO2 Gas Sensor
...Show More Authors

The physical and morphological characteristics of porous silicon (PS) synthesized via gas sensor was assessed by electrochemical etching for a Si wafer in diluted HF acid in water (1:4) at different etching times and different currents. The morphology for PS wafers by AFM show that the average pore diameter varies from 48.63 to 72.54 nm with increasing etching time from 5 to 15min and from 72.54 to 51.37nm with increasing current from 10 to 30 mA. From the study, it was found that the gas sensitivity of In2O3: CdO semiconductor, against NO2 gas, directly correlated to the nanoparticles size, and its sensitivity increases with increasing operating temperature.

View Publication Preview PDF
Scopus (7)
Crossref (4)
Scopus Clarivate Crossref