The loose sand is subject to large settlement when it is exposed to high stresses. This settlement is due to the nature of the high drainage of sand, which displays foundations and constructions to a large danger. The densification of loose sandy soils is required to provide sufficient bearing capacity for the structures. Thus soil stabilization is used to avoid failure in the facilities. Traditional methods of stabilized sandy soil such as fly ash, bituminous, and cement often require an extended curing period. The use of polymers to stabilize sandy soils is more extensive nowadays because it does not require a long curing time in addition to being chemically stable. In this study, the effect of adding different percentages of high-density polyethylene HDPE to the sandy soils' engineering characteristics such as the angle of internal frictions Ø0, shear strength τ, California Bearing Ratio CBR, and permeability k was studied. The results of laboratory tests showed that using of HDPE at percentages (0.1, 0.3, 0.6, 1, and 3%) led to a decrease in soil permeability by 18% and an increase in both the angle of internal friction, the CBR value, and shear strength about 27.2%, 180.9%, and 38.6 % respectively by adding 1%. HDPE.
This study focuses on the use of an optimum amount of Sodium Polyacrylate (SP) for designing cement slurry with the high performance of rheological properties and displacement efficiency. A laboratory study has been carried out on the cement slurry which prepared with SP as superabsorbent polymer. SP has been providing an internal water source that helps in the hydration process, and curing and ultimately increases the cement strength. Also improves the cement performance by improving the cement stability. Several batches were prepared to determine the proper amount of SP to add it in the cement slurry. Also, we studied its effect on cement density, amount of free water in order to observe the rheological properties, and thickening time.
... Show MoreThe rheological behavior among factors that are present in Stokes law can be used to control the stability of the colloidal dispersion system. The felodipine lipid polymer hybrid nanocarriers (LPHNs) is an interesting colloidal dispersion system that is used for rheological characteristic analysis. The LPHNs compose of polymeric components and lipids. This research aims to prepare oral felodipine LPHNs to investigate the effect of independent variables on the rheological behavior of the nanosystem. The microwave-based technique was used to prepare felodipine LPHNs (H1-H9) successfully. All the formulations enter the characterization process for particle size and PDI to ascertain the colloidal properties of the prepared nanosystem t
... Show MoreThe aim of this research work is to study the effect of stabilizing gypseous soil, which covers
vast areas in the middle, west and south parts of Iraq, using liquid asphalt on its strength properties
to be used as a base course layer replacing the traditional materials of coarse aggregate and broken
stones which are scarce at economical prices and hauling distances.
Gypseous soil brought from Al-Ramadi City, west of Iraq, with gypsum content of 66.65%,
medium curing cutback asphalt (MC-30), and hydrated lime are used in this study.
The conducted tests on untreated and treated gypseous soil with different percentages of medium
curing cutback asphalt (MC-30), water, and lime were: unconfined compression strength, and o
This study was conducted in the field of the Poultry Research Station of the animal resources Department / office of Agricultural Research / Ministry of Agriculture from the period 4th April to16th May2021.This study was aimed to investigate the effect of using avocado and chia oil and their mixture in broiler diets on the final productive performance and meat cholesterol concentration and measuring meat oxidation indicators after storing it for 60 days. 300 one-day-old (Ross308) chicks were fed on diets that used avocado oil and chia with percentages of 0, 0.2, 0.4, 0.6%, respectively, and their mixture consisting of 0.0, 0.1, 0.2, 0.3 each of avocado and chia oil (50% avocado + 50% chia oil). The experiment included 10 treatments
... Show MoreThe importance of this research has been to rationalize the cost of producing maize seeds through the followers of modern techniques and methods in agricultural activities such as genetic engineering for increasing production efficiency of maize seeds as well as the importance of calculating seed cost rationalization through the ABC system and thus rationalizing government spending. The research is based on one hypothesis in two ways that the use of genetic engineering on maize seeds works to: one - increase production efficiency of seeds and savings in agricultural inputs. 2. Rationalize the costs of examining and planting maize seeds. In order to calculate the costs will be based on the cost system based on activities ABC. The research
... Show MoreThe study area soils suffer from several problems appear as tkhesvat and cracks in the roads and waterlogging which reduces the susceptibility of soil to withstand pressure, this study was conducted on the soil of the Karkh district based on field study that included (6) samples of soil physical analyses contain different ratios of (mud, sand, silt) as percentages (52%, 45%, 3 #) respectively, and liquidity limit rate (39%) Stroke rate plasticity was (20.6%) The rate coefficient of plasticity total (19.2%)0
The effects of scattering and secondary radiation generated inside the material on dose equivalent rate where studied using Co60 and Cs137 sources of activity (199.8 , 177.6) MBq , respectively for different thicknesses of Al , Pb and Pb- glass . The results showed that the equivalent rate increases when the effect of scattering was included for Al and Pb shields with cobalt-60 source of energy 1.25 MeV ; and decreases for Pb shield with Cs-137 source of energy 0.662MeV .The results showed also that the atomic number of The material effects the dose equivalent rate . The Pb-glass shield was found to be more efficient in absorption than other shields.
In this research, analytical study for simulating a Fabry-Perot bistable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonide (InSb). An optimization procedure using reflective (~85%) InSb etalon (~50µm) thick is described. For this etalon with a (50 µm) spot diameter beam, the minimum switching power is (~0.078 mW) and switching time is (~150 ns), leading to a switching energy of (~11.77 pJ) for this device. Also, the main role played by the temperature to change the etalon characteristic from nonlinear to linear dynamics.
In the present work we prepared heterojunction not homogenous CdS/:In/Cu2S) by spray and displacement methods on glass substrate , CdS:In films prepared by different impurities constration. Cu2S prepared by chemical displacement method to improve the junction properties , structural and optical properties of the deposited films was achieved . The study shows that the film polycrystalline by XRD result for all film and the energy gap was direct to 2.38 eV with no effect on this value by impurities at this constration .