Diyala Governorate was recently exposed to high flood waves discharged from Hemrin Dam. Since the dam was at its full capacity during the flood period, these waves were discharged to the Diyala River. Because of the reduction in Diyala River capacity to 750m3/s, the cities and villages on both sides of the river banks were inundated. Thus, the study's objective is to design a flood escape out of the Diyala River, to discharge the flood wave through it. The flood escape simulation was done by using HEC- RAS software. Two hundred twenty-three cross sections for the escape and 30 cross-sections of the Diyala River were used as geometric data. Depending on the geological formation that the escape passed through, two roughness coefficients of 0.035 and 0.028 were applied. An outflow downstream Hemrin Dam varies from 1100m3/s to 1800m3/s was applied as boundary condition upstream Diyala River. One dimensional hydraulic model was developed for the escape and the river, the results showed that aside weir could be constructed at the escape entrance with crest level 67m.a.m.s.l. and 800m width, followed by drop structure of four rectangular steps, this case provides safe discharge to Diyala River if flood wave of 1500m3/s released from Hemrin Dam.
Abstract
Paraffin wax is utilized for the heat storage applications taking advantage from the high stored latent heat during the phase change (from solid to fluid) period. What isn't right with this procedure is that the wax has a little heat transfer rate because of its low thermal conductivity. The thermal conductivity improvement of the paraffin wax has been examined utilizing nano-material with high thermal conductivity. In the recent study, (Al2O3) nanoparticles with weights of 1, 2, and 3% of the paraffin wax were added to the paraffin wax. The Iraqi paraffin wax accessible at the local markets was utilized as a phase change material (PCM).
Many properties of the
... Show MoreControlling cost in construction projects is an essential issue. This study investigates the most critical problems that cause weakness in cost control in Iraqi construction projects. The quantitative technique was used by conducting a survey directed to professionals who work on construction projects. One hundred and sixty-four questionnaire forms were distributed to private sector companies, government companies, and government institutions, and the responses were subjected to the required statistical analysis. The results indicate that the most influential factors are the weakness in keeping up with the use of modern concepts, methods, and technologies, the delay in receiving the amounts due for work done from the owner, fluctuat
... Show MoreA new series of N-acyl hydrazones (4a-g) derived from indole-3-propionic acid (IPA) were synthesized. These N-acyl hydrazones were prepared by the reaction of 3-(1H-indol-3-yl) propane hydrazide and aldehyde in the existence of glacial acetic acid as a catalyst. 1HNMR and FT-IR analyses were used to identify the synthesized compounds and they were in vitro evaluated as antibacterial agents against six different types of microorganisms by using well diffusion method. All the tested N-acyl hydrazones (4a-g) displayed moderate activity against the Gram-negative E.coli, comparable to that of Amoxicillin. Some of the tested N-acyl hydrazones also exhibited intermediate activity ag
... Show MoreIn this study, chemical oxidation was employed for the synthesis of polypyrrole (PPy) nanofiber. Furthermore, PPy has been subjected to treatment using nanoparticles of neodymium oxide (Nd2O3), which were produced and added in a certain ratio. The inquiry centered on the structural characteristics of the blend of polypyrrole and neodymium oxide after their combination. The investigation utilises X-ray diffraction (XRD), FTIR, and Field Emission Scanning Electron Microscopy (FE-SEM) for PPy, 10%, 30%, and 50% by volume of Nd2O3. According to the electrochemical tests, it has been noted that the nanocomposites exhibit a substantial amount of pseudocapacitive activity.
In this research, geopolymer mortar had to be designed with 50% to 50% slag and fly ash with and without 1% micro steel fiber at curing temperature of 240℃. The molarity of alkaline solution adjusted with 12 molar sodium hydroxid to sodium silicate was 2 to 1, reaspectivly. The heat of curing increased the geopolymerization proceses of geoplymer mortar, which led to increasing strength, giving the best result and early curing age. The heat was applied for two days by four hours each day. It was discovered in the impact test that the value first crack of each mix was somewhat similar, but the failure increased 72% for the mixture that did not contain fiber. For the energy observation results it was shown that the mixt
... Show More