Inefficient wastewater disposal and wastewater discharge problems in water bodies have led to increasing pollution in water bodies. Pollutants in the river contribute to increasing the biological oxygen demand (BOD), total suspended solids (SS), total dissolved solids (TDS), chemical oxygen demand (COD), and toxic metals render this water unsuitable for consumption and even pose a significant risk to human health. Over the last few years, water conservation has been the subject of growing awareness and concern throughout the world, so this research focused on review studies of researches that studied the importance of water quality of wastewater treated disposal in water bodies and modern technology to management wastewater disposals.
In this paper, variable gain nonlinear PD and PI fuzzy logic controllers are designed and the effect of the variable gain characteristic of these controllers is analyzed to show its contribution in enhancing the performance of the closed loop system over a conventional linear PID controller. Simulation results and time domain performance characteristics show how these fuzzy controllers outperform the conventional PID controller when used to control a nonlinear plant and a plant that has time delay.
Social risks posed a great challenge to the development path in Iraq, which resulted in widening the development gaps, whether these gaps were between rural and embargoed areas, or between Iraqi governorates, and the gender gap. Besides, the nature of the reciprocal relationship between the social risks and the development process requires the adoption of development trends that are sensitive to the risks that take upon themselves the prompt and correct response to these risks, away from randomness and confusion that Iraq suffered from for decades. However, currently, the situation has differed a great deal. This is because the size and types of such gaps have widened and become more complicated than before; a matter which has led to hav
... Show MoreLinear motor offers several features in many applications that require linear motion. Nevertheless, the presence of cogging force can deteriorate the thrust of a permanent magnet linear motor. Using several methodologies, a design of synchronous single sided linear iron-core motor was proposed. According to exact formulas with surface-mounted magnets and concentrated winding specification, which are relying on geometrical parameters. Two-dimensional performance analysis of the designed model and its multi-objective optimization were accomplished as a method to reduce the motor cogging force using MAXWELL ANSYS. The optimum model design results showed that the maximum force ripple was approximatrly reduced by 81.24%compared to the origina
... Show MoreBackground: Bacteriocin is a peptidic toxin has many advantages to bacteria in their ecological niche and has strong antibacterial activity. Objective: The aim of this study was to evaluation of bacteriocin using Streptococcus sanguinis isolated from human dental caries.
Subjects and Methods: Thirty five streptococcus isolates were diagnosed and tested for their production of bacteriocin, and then the optimal conditions for production of bacteriocin were determined. After that, the purification of bacteriocin was made partially by ammonium sulfate at 95% saturation levels, followed by and gel filtration chromatography
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show More