In this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorptions. To analyze the proposed design, electromagnetic parameters such as permittivity permeability reflective index , and impedance were extracted and presented. The structure's working principle is analyzed and illustrated through input impedance, surface current, and the electric field of the structure. The proposed absorber compared with the recent MMA presented in the literature. The obtained results indicated that the proposed absorber has the widest bandwidth with the highest absorption value. According to these results, the proposed metamaterials absorber is a good candidate for RADAR applications.
PMMA (Poly methyl methacrylate) is considered one of the most commonly used materials in denture base fabrication due to its ideal properties. Although, a major problem with this resin is the frequent fractures due to heavy chewing forces which lead to early crack and fracture in clinical use. The addition of nanoparticles as filler performed in this study to enhance its selected mechanical properties. The Nano-additive effect investigated in normal circumstances and under a different temperature during water exposure. First, tests applied on the prepared samples at room temperature and then after exposure to water bath at (20, 40, 60) C° respectively. SEM, PSD, EDX were utilized for samples evaluation in this study. Flexural
... Show MoreExploring the B-Spline Transform for Estimating Lévy Process Parameters: Applications in Finance and Biomodeling Exploring the B-Spline Transform for Estimating Lévy Process Parameters: Applications in Finance and Biomodeling Letters in Biomathematics · Jul 7, 2025Letters in Biomathematics · Jul 7, 2025 Show publication This paper, presents the application of the B-spline transform as an effective and precise technique for estimating key parameters i.e., drift, volatility, and jump intensity for Lévy processes. Lévy processes are powerful tools for representing phenomena with continuous trends with abrupt changes. The proposed approach is validated through a simulated biological case study on animal migration in which movements are mo
... Show MoreIn this work, composite materials were prepared by mixing different concentrations of ferrites with polyacrylonitrile (PAN) polymer. Using the electrospinning technique, these composites were deposited on a p-type silicon wafer. The prepared samples demonstrated nanofibers in both pure PAN polymers and their composites with ferrite. Prior to examining the humidity sensing effectiveness with a percentage of relative humidity at a frequency of 10 kHz, based on ambient temperature and a relative humidity range of 50–100%, the composite nanofibers demonstrated stronger humidity sensing compared to the pure PAN nanofibers, which demonstrated a powerful resistance response. More precisely, the PAN@ferrite nanocomposite showed a broad adsorption
... Show MoreIn this study, pure Co3O4 nano structure and doping with 4 %, and
6 % of Yttrium is successfully synthesized by hydrothermal method.
The XRD examination, optical, electrical and photo sensing
properties have been studied for pure and doped Co3O4 thin films.
The X-ray diffraction (XRD) analysis shows that all films are
polycrystalline in nature, having cubic structure.
The optical properties indication that the optical energy gap follows
allowed direct electronic transition calculated using Tauc equation
and it increases for doped Co3O4. The photo sensing properties of
thin films are studied as a function of time at different wavelengths to
find the sensitivity for these lights.
High photo sensitivity dope
In this research, a novel synthesis of CaONPs has been developed via an environmentally friendly, green method. Garlic extract (Allium sativum) was used as a green-reducing and stabilizing agent for CaONPs. The average particle size of CaONPs was approximately 24.42 nm. The synthesized CaONPs were identified by using Fourier transform infrared (FT-IR) spectroscopy, U.V.-vis spectrum, X-ray diffraction (XRD), Field Emission-Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy, transmission electron microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX), Atomic Force Microscopy (AFM), and zeta potential (Zp) analysis. The current study highlights the notable applications for CaONPs. First, an antimicrobial assay revea
... Show Moreتم في هذا البحث استخدام المحفز الجديد المصنع من تحميل دقائق البلاتين النانوية على سطح الصفائح النانوية للكرافين كمحفز ضوئي واختباره لدراسة التجزئة الضوئية لملوثات المياه وازالتها بشكل نهائي من مصادر المياه لما لها من تأثير سلبي على البيئة. حيث تم استخدام صبغة البروموفينول الأزرق كمثال على أحد الملوثات. في البدء تم التأكد من تحضير المحفز بالطريقة المستخدمة في طريقة العمل من خلال تشخيصه باستخدام عدد من ا
... Show Moreتم في هذا البحث استخدام المحفز الجديد المصنع من تحميل دقائق البلاتين النانوية على سطح الصفائح النانوية للكرافين كمحفز ضوئي واختباره لدراسة التجزئة الضوئية لملوثات المياه وازالتها بشكل نهائي من مصادر المياه لما لها من تأثير سلبي على البيئة. حيث تم استخدام صبغة البروموفينول الأزرق كمثال على أحد الملوثات. في البدء تم التأكد من تحضير المحفز بالطريقة المستخدمة في طريقة العمل من خلال تشخيصه باستخدام عدد من ا
... Show MoreThis work aims to investigate the integrated ultra-dense wavelength division multiplexing (UDWDM) and polarization division multiplexing (PDM) schemes incorporated in the free space optic (FSO) communication system. Erbium-doped fiber amplifiers (EDFAs) are used as post and pre-amplifiers in the proposed UDWDM–PDM–FSO system to boost the transmission power for increasing the distance. Thirty-two channels are transported over the FSO link to realize the total data transmission of 160 and 320 Gbps with 0.08 and 0.1 nm channel spacing, respectively. Results are also reported with non-return to zero modulation schemes. The performance of the proposed UDWDM–PDM–FSO transmission sys
In this study, chemical oxidation was employed for the synthesis of polypyrrole (PPy) nanofiber. Furthermore, PPy has been subjected to treatment using nanoparticles of neodymium oxide (Nd2O3), which were produced and added in a certain ratio. The inquiry centered on the structural characteristics of the blend of polypyrrole and neodymium oxide after their combination. The investigation utilises X-ray diffraction (XRD), FTIR, and Field Emission Scanning Electron Microscopy (FE-SEM) for PPy, 10%, 30%, and 50% by volume of Nd2O3. According to the electrochemical tests, it has been noted that the nanocomposites exhibit a substantial amount of pseudocapacitive activity.