Convolutional Neural Networks (CNN) have high performance in the fields of object recognition and classification. The strength of CNNs comes from the fact that they are able to extract information from raw-pixel content and learn features automatically. Feature extraction and classification algorithms can be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages (region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to compare the speed and accuracy of Faster RCNN, YOLO, and SSD for effective drone detection in various environments. We have found that both Faster RCNN and YOLO have high recognition ability compared to SSD; on the other hand, SSD has good detection ability.
يعتقد البعض ان مفهوم العلم يعني الآلات والاجهزة العلمية (تقنيات التعليم) وهي لا تختلف عن مفهوم تكنولوجيا المعلومات , ويعد هذا الاعتقاد خاطئ , لان العلم هو بناء المعرفة العلمية المنظمة والتي يتم التوصل اليها عن طريق البحث العلمي , اما تكنولوجيا المعلومات فهي "التطبيقات العملية للمعرفة العلمية في مختلف المجالات ذات الفائدة المباشرة بحياة الانسان, او هي النواحي التطبيقية للعلم وما يرتبط بها من آلات واجهزة".
يؤدي عرض معلومات مضللة او محرفة ضمن القوائم المالية والتي تعد أهم مصادر المعلومات الموثوقة التي يُعول عليها لاتخاذ القرارات السليمة الى عدم قدرتها على عكس نتيجة النشاط والمركز المالي لها او اعمال الوحدة الاقتصادية لتلك الفترات الزمنية بصورة صادقة وعادلة نتيجة لنوعية المعلومات المفصح عنها في القوائم المالية لذلك زاد الاهتمام بتطوير الممارسات المحاسبية لتتضمن افصاحات كافية بغرض اعطائهم صورة صادقة وعادلة
... Show MoreThe aim of the research is to study the comparison between (ARIMA) Auto Regressive Integrated Moving Average and(ANNs) Artificial Neural Networks models and to select the best one for prediction the monthly relative humidity values depending upon the standard errors between estimated and observe values . It has been noted that both can be used for estimation and the best on among is (ANNs) as the values (MAE,RMSE, R2) is )0.036816,0.0466,0.91) respectively for the best formula for model (ARIMA) (6,0,2)(6,0,1) whereas the values of estimates relative to model (ANNs) for the best formula (5,5,1) is (0.0109, 0.0139 ,0.991) respectively. so that model (ANNs) is superior than (ARIMA) in a such evaluation.
ABSTRUCT
In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error ( λ ) in the model (SPSEM), estimated the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo
... Show MoreThis mini review provides an overview of methods for manufacturing expanded graphite (EGT) and the use of its composites with metal oxides in the field of photodegradation of dyes. Dyes from textile manufacturing represent a significant environmental pollution problem in waterways worldwide, highlighting the need for environmentally friendly and efficient technologies to remove dyes from industrial and local wastewater. Photodegradation technologies offer a low-cost, sustainable solution with minimal secondary pollution. Carbon-based materials, such as expanded graphite, are advantageous in enhancing catalytic activity. Accordingly, this review will explore the different fabrication techniques of expanded graphite and summarize the recent d
... Show More