The flow measurements have increased importance in the last decades due to the shortage of water resources resulting from climate changes that request high control of the available water needed for different uses. The classical technique of open channel flow measurement by the integrating-float method was needed for measuring flow in different locations when there were no available modern devices for different reasons, such as the cost of devices. So, the use of classical techniques was taken place to solve the problem. The present study examines the integrating float method and defines the parameters affecting the acceleration of floating spheres in flowing water that was analyzed using experimental measurements. The method was investigated theoretically, as well as many experimental tests in a fixed floor laboratory flume were conducted. Different sizes of solid plastic spheres with different weights were used as floats to measure velocities and then discharge computation. The results indicate that the integrating-float technique is feasible and accurate for measuring low flow velocity in open channels. It was desirable to use small floats with specific gravity closer to unity to get more accurate results. The measured velocities and the estimated discharges were compared with discharges obtained using some other common laboratory measuring techniques. Good agreement was obtained between the integrating-float method results with the results of velocities obtained using other measurement techniques, with an error of less than 2.5%.
Abstract:
The six Arab Gulf states (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, UAE) play a vital role, especially with its geographical location and natural resources (oil and gas) as well as other cultural and civilizational elements, in achieving global economic balance and more specifically global energy security, naturally because of these countries have a comparative advantage in the field of fossil energy (oil and gas), thus this sector becomes more attractive for local and international investments alike. Being the energy sector a leader sector in the economic development process, and the basic factor to achieve savings and financial surpluses in thes
... Show MoreExisting leachate models over–or underestimates leachate generation by up to three orders of magnitude. Practical experiments show that channeled flow in waste leads to rapid discharge of large leachate volumes and heterogeneous moisture distribution. In order to more accurately predict leachate generation, leachate models must be improved. To predict moisture movement through waste, the two–domain PREFLO, are tested. Experimental waste and leachate flow values are compared with model predictions. When calibrated with experimental parameters, the PREFLO provides estimates of breakthrough time. In the short term, field capacity has to be reduced to 0.12 and effective storage and hydraulic conductivity of the waste must be increased to
... Show MoreBecause of their Physico‐chemical characteristics and its composition, the development of new specific analytical methodologies to determine some highly polar pesticides are required. The reported methods demand long analysis time, expensive instruments and prior extraction of pesticide for detection. The current work presents a new flow injection analysis method combined with indirect photometric detection for the determination of Fosetyl‐Aluminum (Fosetyl‐Al) in commercial formulations, with rapid and highly accurate determination involving only construction of manifold system combined with photometric detector without need some of the pre‐treatments to the sample before the analysis such a
This study delves into the realm of advanced cooling techniques by examining the performance of a two-stage parallel flow indirect evaporative cooling system enhanced with aspen pads in the challenging climate of Baghdad. The objective was to achieve average air dry bulb temperatures (43 oC) below the ambient wet bulb temperatures (24.95 oC) with an average relative humidity of 23%, aiming for unparalleled cooling efficiency. The research experiment was carried out in the urban environment of Baghdad, characterized by high temperature conditions. The investigation focused on the potential of the two-stage parallel flow setup, combined with the cooling capability of aspen pads, to surpass the limitat
... Show MoreBanks face different types of banking risks that limit the performance of its functions and achieve its objectives, including the financial risk that is based on current research into two types including a credit and liquidity risks. And established credit risk due to the possibility of delaying the borrowers to fulfill their obligations to the bank when due or non-payments on according to the terms agreed upon, while liquidity risk arises as a result of the inability of the bank to fund the financial needs, any inability to provide cash to pay its obligations short on credit without achieving tangible loss or the inability to employ the funds properly and show the liquidity risk in the event of inadequate cash inflows to the bank for an
... Show MoreA new colorimetric-flow injection method has been developed and validated for the detection of Cefotaxime sodium in pharmaceutical formulations. This method stands out for its rapid and sensitive nature. The formation of a brown-colored complex between Cefotaxime sodium and the Biuret reagent in a highly alkaline environment serves as the basis for the detection. The intensity of this colored complex is measured using a custom-built Continuous Flow Injection Analyzer, enabling accurate quantification of Cefotaxime sodium. Optimization studies of the chemical and physical parameters such as dilution of Biuret reagent, effect of the medium basicity, flow rate, sample loop and others have been investigated. The calibration gra
... Show MoreAbstract
In this study, the effect of carboxylic methyl cellulose (CMC), and sodium dodcyl benzene sulfonate (SDBS) as an aqueous solution on the drag reduction was investigated. Different concentrations of (CMC) and (SDBS) such as (50, 100, 150, 200, 250, 300, 350, 400, 450, and 500 ppm) were used to analyze the aqueous solution properties, including surface tension, conductivity, and shear viscosity. The optimum four concentrations (i.e., 50, 100, 200, and 300 ppm) of fluid properties were utilized to find their effect on the drag reduction. Two different PVC pipe diameters (i.e., 1" and 3/4") were used in this work. The results showed that blending CMC with SDBS gives
... Show More
