Portable devices such as smartphones, tablet PCs, and PDAs are a useful combination of hardware and software turned toward the mobile workers. While they present the ability to review documents, communicate via electronic mail, appointments management, meetings, etc. They usually lack a variety of essential security features. To address the security concerns of sensitive data, many individuals and organizations, knowing the associated threats mitigate them through improving authentication of users, encryption of content, protection from malware, firewalls, intrusion prevention, etc. However, no standards have been developed yet to determine whether such mobile data management systems adequately provide the fundamental security functions demanded by organizations and whether these functions have been securely developed. Therefore, this paper proposes a security framework for mobile data that combines core security mechanisms to avoid these problems and protects sensitive information without spending time and money deploying several new applications.
Association rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.
Saudi Arabia’s banking sector plays an important role in the country’s development as it is among the leading sectors in the financial sector. Considering, two main Saudi banks (The National Commercial Bank and Saudi American bank), the present study aims to observe the impact of emotional intelligence on employee performance. The components of emotional intelligence affecting employee performance include self-management, relationship management, self-awareness, and social awareness. A quantitative methodology was applied to analyse the survey results of 300 respondents over the period from 2018 to 2019. The results show that there was a significant positive impact of self-management, self-awareness, and relationship manageme
... Show MoreAfter the internal audit as a tool of internal control in any organization, and helps in the evaluation of all internal control activities, as a tool to ensure compliance with the plans and policies to achieve the goals of the institution as much as possible of the efficiency, effectiveness, and should have the Internal Audit full independence and is linked to senior management, and aims to get the credibility and accuracy of information and data, and keep abreast of modern developments.
The practical side includes the preparation of the questionnaire, which included a set of questions that fit the hypothesis of the research, was Tozeiha the research sample consisting of employees of the Internal Audit Department an
... Show MoreThe aim of this research is to study and test the impact of the policy of open-book accounting as one of the cost management mechanisms in achieving the competitive advantage in Jordanian industrial public companies, to achieve the objectives of the study, a field study was conducted by surveying the views of a sample of the accountants of the Jordanian industrial public companies. Hence the arithmetical Means, the Standard Deviations, the Significant Value and the Simple Linear Regression are used to test the research hypotheses and to achieve the research goals. The results of the study showed that there is a statistically significant effect of the policy of open-book accounting as one of the cost management mechanisms in achieving the
... Show MoreTelevision white spaces (TVWSs) refer to the unused part of the spectrum under the very high frequency (VHF) and ultra-high frequency (UHF) bands. TVWS are frequencies under licenced primary users (PUs) that are not being used and are available for secondary users (SUs). There are several ways of implementing TVWS in communications, one of which is the use of TVWS database (TVWSDB). The primary purpose of TVWSDB is to protect PUs from interference with SUs. There are several geolocation databases available for this purpose. However, it is unclear if those databases have the prediction feature that gives TVWSDB the capability of decreasing the number of inquiries from SUs. With this in mind, the authors present a reinforcement learning-ba
... Show MoreANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data
... Show MoreIn recent years, social media has been increasing widely and obviously as a media for users expressing their emotions and feelings through thousands of posts and comments related to tourism companies. As a consequence, it became difficult for tourists to read all the comments to determine whether these opinions are positive or negative to assess the success of a tourism company. In this paper, a modest model is proposed to assess e-tourism companies using Iraqi dialect reviews collected from Facebook. The reviews are analyzed using text mining techniques for sentiment classification. The generated sentiment words are classified into positive, negative and neutral comments by utilizing Rough Set Theory, Naïve Bayes and K-Nearest Neighbor
... Show MoreResearch in the field of biometric simulation is in the design of various and various industrial products, but it still needs new studies and research that are compatible with scientific and technological development, especially in the field of computing. Recognition, deduction, and simulation of nature, for example, the use of animal bones as tools in cutting, hunting or fighting, in addition to the use of animal drawings in cave drawings as symbols of strength, as well as dance movements and face painting to simulate the natural reality that surrounds humans. This trend developed to include simulation of nature in the formal and functional aspect to reach To vocabulary and solutions that help man in his daily life, the research probl
... Show MoreAn adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th
... Show More