Many studies and researchers have reported significant evidence that some physical properties of water can be changed as it passes through a magnetic field that can improve water use. This can have a promising potential for applications, especially in the fields of irrigation and drainage. In this research, magnetized water was used to leach salt-affected sandy loam soil. A test rig was designed and constructed to investigate the effects of magnetized water on leaching soil. The rig consists of a magnetization device that can provide variable intensity. Water was supplied from a constant head reservoir to the magnetization device then to the soils that were placed in plastic columns. Five different magnetic intensities and five different times of exposing the flow of water to the magnetic field were applied. The time of exposure to the magnetic field was represented by the flow velocity of the flow passing through the magnetic field. The treated water is applied to leach each soil column in three consecutive leaching processes. Leaching water drained from the soil samples were tested for EC and pH, K+, Na+, Mg+2, Ca+2, Cl-, HCO-3, and SO4-2. The results showed that the efficiency of magnetized water in removing salts from the soil is more than the untreated water. As the magnetic intensity and exposure time are increased, more salts were leached out of the soil. When comparing the experiments conducted with magnetized water with that untreated water, the maximum increase in the EC value was 58.6%, and in the pH values was of 2.4%.
This study is concerned with the recent changes that occurred in the last three years (2017-2019) in the marshes region in southern Iraq as a result of the changes in the global climate, the study included all the water bodies in the five governorates that are located in the southern regions of Iraq (Wasit, Maysan, Dhi-Qar, Qadisiyah and Basrah), which represent the marshes lands in Iraq. Scenes of the Landsat 8 satellite are used to create a mosaic to cover the five governorates within a time window with the slightest difference between the date of the scene capture, not to exceed 8 days. The results of calculating the changes in water areas were obtained using the classifier support vector machine, where high accuracy ratios were recorded
... Show Morethe study covered theoretical concering parial molal volume the applicability of jones-dole equation
A simple and rapid spectrophotometric method for the determination of sulphite SO3-2 is described. The method is based on the rapid reduction of known amount of chromate CrO4-2 in the presence of sulphite in acidic medium of 2N H2SO4. The amount of excess of chromate was measured after it reactions with 1,5-diphenylcarbazide which finally gives a pink-violet, water soluble and stable complex, which exhibit a maximum absorption at 542 nm. Beer's law was obeyed in the concentration range from 0.004-6.0 µg of sulphite in a final volume of 25 ml with a molar absorbtivity of 4.64×104 l.mol-1.cm-1, Sandal's sensitivity index of 0.001724 ?g .cm-2 and relative standard deviation of ±0.55 - ±0.83 depending on the concentration level. The present
... Show MoreA study of irrigation water was conducted Baghdad city to find out extent of its pollution by some heavy metals (Pb, Cd, Ni, Co, CU, Cr, Zn and Fe). Water samples were collected randomly from different sources (river, well and stream). Results showed that the concentration of studied heavy metals were as follows: Lead between 0.43-11.75 mg L-1, Cadmium between 0.01-0.95 mg L-1, Nickel between 0.008-0.46 mg L-1, Cobalt between Nil - 0.185 mg L-1, Copper is between 0.326 - 1.58 mg L-1, Chromium is between Nil-0.068 mg L-1, Zinc 0.398-1.182 mg L-1, as for Iro
The distribution of chilled water flow rate in terminal unit is a major factor used to evaluate the performance of central air conditioning unit. In this work, a theoretical chilled water distribution in the terminal units has been studied to predict the optimum heat performance of terminal unit. The central Air-conditioning unit model consists of cooling/ heating coil (three units), chilled water source (chiller), three-way and two-way valve with bypass, piping network, and pump. The term of optimization in terminal unit ingredient has two categories, the first is the uniform of the water flow rate representing in statically permanents standard deviation (minimum value) and the second category is the maximum heat transfer rate fro
... Show More
