The precipitation of calcite induced via microorganisms (MICP) is a technique that has been developed as an innovative sustainable ground improvement method utilizing ureolytic bacteria to soil strengthening and stabilization. Locally isolated Bacillus Sonorensis from Iraqi soil samples were found to have high abilities in producing urease. This study aims to use the MICP technique in improving the undrained shear strength of soft clay soil using two native urease producing bacteria that help in the precipitation of calcite to increase the cementation between soil particles. Three concentrations of each of the locally prepared Bacillus sonorensis are used in this study for cementation reagent (0.25M, 0.5M, and 1M) during the period of treatment. The results showed that the native isolated bacteria have high activity in bindings the soil particles together. The results of unconfined compressive strength tests showed that using MICP helps increase the undrained shear strength of soil by (3-5 times) for C11 types of native isolates, but the D11 was (1.5-2 times) because two types have different activity. This study's main finding is using the native urease-producing bacteria isolated from Iraqi soil in the MICP technique for the biocementation of soil, which is considered one of the sustainable techniques in the construction industry.
Many strains of lactic bacteria produce antimicrobial peptides of bacteriocins that are antibiotics used against pathogenic strains. The present work aimed to use a banana peels medium in the fermentation process to replace the commercial MRS medium for decreasing the cost of bacteriocins LAB production. Based on the result, banana peel was a cost-effective and viable alternative carbon source for the production and development of bacteriocin-producing Lactobacilli. The growth of lactobacilli in commercial MRS medium and Banana Peel medium showed no differences, therefore banana peel waste can be used to produce Lactobacilli bacteriocins. Lactobacillus strains grew exceptionally well at 37 C and pH 6.0.
Membrane manufacturing system was operated using dry/wet phase inversion process. A sample of hollow fiber membrane was prepared using (17% wt PVC) polyvinyl chloride as membrane material and N, N Dimethylacetamide (DMAC) as solvent in the first run and the second run was made using (DMAC/Acetone) of ratio 3.4 w/w. Scanning electron microscope (SEM) was used to predict the structure and dimensions of hollow fiber membranes prepared. The ultrafiltration experiments were performed using soluble polymeric solute poly ethylene glycol (PEG) of molecular weight (20000 Dalton) 800 ppm solution 25 °C temperature and 1 bar pressure. The experimental results show that pure water permeation increased from 25.7 to 32.2 (L/m2.h.bar) by adding aceton
... Show MoreTwosimple, sensitive,accurate, and precise spectrophotometric methods have been developed for the determination of chlorpromazine – HCl in pure form and pharmaceutical formulation. The first method involved treatment of cited drug with a measured excess of permanganate in acid medium and the unreacted oxidant was measured at 525 nm. The second method involves the reaction of the drug with potassium permanganate in the presence of sodium hydroxide to produce a bluish – green colored manganite which is measurable at 610nm. All the experimental variables affecting the development of the manganite ions were investigatedand conditions were optimized. Working linearity ranges were 5-45 µg.mL-1an
... Show MoreIn this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researchers with the first step of EMG analysis. Huge sets of results (more than 100 sets) are proposed and then classified to be discussed and reach the final.
This study aims to test ceramic waste's capacity to remove nickel from aqueous solutions through adsorption. Ceramic wastes were collected from the Refractories Manufacturing Plant in Ramadi. Through a series of lab tests, the reaction time (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 minutes, and Ni concentrations (20, 40, 60, and 80) were tested using ceramic wastes with a solid to liquid ratio of 2g/30ml. At a temperature of 30ºC, the pH, total dissolved solids (TDS), and electrical conductivity (EC) were all measured. The equilibrium time was set at 30 min. Thereafter, the sorption (%) somewhat increased positively with the Ni concentration. Freundlich's equation showed that the adsorption intensity is 1.1827 and the Freundlich c
... Show More