Preferred Language
Articles
/
joe-1292
Convolutional Multi-Spike Neural Network as Intelligent System Prediction for Control Systems
...Show More Authors

The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed structure has the ability to predict the response of dynamical systems more powerful than with the CNN. The proposed structure is more powerful than the CNN by 28.33% in terms of minimizing the root mean square error.  

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Feb 28 2023
Journal Name
Applied System Innovation
Earthquake Hazard Mitigation for Uncertain Building Systems Based on Adaptive Synergetic Control
...Show More Authors

This study presents an adaptive control scheme based on synergetic control theory for suppressing the vibration of building structures due to earthquake. The control key for the proposed controller is based on a magneto-rheological (MR) damper, which supports the building. According to Lyapunov-based stability analysis, an adaptive synergetic control (ASC) strategy was established under variation of the stiffness and viscosity coefficients in the vibrated building. The control and adaptive laws of the ASC were developed to ensure the stability of the controlled structure. The proposed controller addresses the suppression problem of a single-degree-of-freedom (SDOF) building model, and an earthquake control scenario was conducted and simulat

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Block Method for SolvingState-Space Equations of Linear Continuous-Time Control Systems
...Show More Authors

This paper presents a newly developed method with new algorithms to find the numerical solution of nth-order state-space equations (SSE) of linear continuous-time control system by using block method. The algorithms have been written in Matlab language. The state-space equation is the modern representation to the analysis of continuous-time system. It was treated numerically to the single-input-single-output (SISO) systems as well as multiple-input-multiple-output (MIMO) systems by using fourth-order-six-steps block method. We show that it is possible to find the output values of the state-space method using block method. Comparison between the numerical and exact results has been given for some numerical examples for solving different type

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Key Exchange Management by using Neural Network Synchronization
...Show More Authors

The paper presents a neural synchronization into intensive study in order to address challenges preventing from adopting it as an alternative key exchange algorithm. The results obtained from the implementation of neural synchronization with this proposed system address two challenges: namely the verification of establishing the synchronization between the two neural networks, and the public initiation of the input vector for each party. Solutions are presented and mathematical model is developed and presented, and as this proposed system focuses on stream cipher; a system of LFSRs (linear feedback shift registers) has been used with a balanced memory to generate the key. The initializations of these LFSRs are neural weights after achiev

... Show More
View Publication Preview PDF
Publication Date
Thu May 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Channel Estimation and Prediction Based Adaptive Wireless Communication Systems
...Show More Authors

Wireless channels are typically much more noisy than wired links and subjected to fading due to multipath  propagation which result in ISI and hence high error rate. Adaptive modulation is a powerful technique to improve the tradeoff between spectral efficiency and Bit Error Rate (BER). In order to adjust the transmission rate, channel state information (CSI) is required at the transmitter side.

In this paper the performance enhancement of using linear prediction along with channel estimation to track the channel variations and adaptive modulation were examined. The simulation results shows that the channel estimation is sufficient for low Doppler frequency shifts (<30 Hz), while channel prediction is much more suited at

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 06 2019
Journal Name
Ssociation Of Arab Universities Journal Of Engineering Sciences
Application of Artificial Neural Network and GeographicalInformation System Models to Predict and Evaluate the Quality ofDiyala River Water, Iraq
...Show More Authors

This research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer

... Show More
Publication Date
Wed Jan 01 2020
Journal Name
International Conference Of Numerical Analysis And Applied Mathematics Icnaam 2019
Functionalized multi-walled carbon nanotubes network sensor for NO2 gas detection at room temperature
...Show More Authors

View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Jun 30 2015
Journal Name
Al-khwarizmi Engineering Journal
Integral Sliding Mode Control Design for Electronic Throttle Valve System
...Show More Authors

Abstract

 One of the major components in an automobile engine is the throttle valve part. It is used to keep up with emissions and fuel efficiency low. Design a control system to the throttle valve is newly common requirement trend in automotive technology. The non-smoothness nonlinearity in throttle valve model are due to the friction model and the nonlinear spring, the uncertainty in system parameters and non-satisfying the matching condition are the main obstacles when designing a throttle plate controller.

In this work, the theory of the Integral Sliding Mode Control (ISMC) is utilized to design a robust controller for the Electronic Throttle Valve (ETV) system. From the first in

... Show More
View Publication Preview PDF
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Engineering
The Intelligent Auto-Tuning Controller Design Based on Dolphin Echo Location for Blood Glucose Monitoring System
...Show More Authors

This paper presents an enhancement technique for tracking and regulating the blood glucose level for diabetic patients using an intelligent auto-tuning Proportional-Integral-Derivative PID controller. The proposed controller aims to generate the best insulin control action responsible for regulating the blood glucose level precisely, accurately, and quickly. The tuning control algorithm used the Dolphin Echolocation Optimization (DEO) algorithm for obtaining the near-optimal PID controller parameters with a proposed time domain specification performance index. The MATLAB simulation results for three different patients showed that the effectiveness and the robustness of the proposed control algorithm in terms of fast gene

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 03 2018
Journal Name
Journal Of Engineering
Variable Structure Control Design for a Magnetic Levitation System
...Show More Authors

In this paper the variable structure control theory is utilized to derive a discontinuous controller to the magnetic levitation system. The magnetic levitation system model is considered uncertain, which subjected to the uncertainty in system parameters, also it is open-loop unstable and strongly nonlinear. The proposed variable structure control to magnetic levitation system is proved, and the area of attraction is determined. Additionally, the chattering, which induced due to the discontinuity in control law, is attenuated by using a non-smooth approximate. With this approximation the resulted controller is a continuous variable structure controller with a determined steady state error according to the selected control

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
Artificial Neural Network Models to Predict the Cost and Time of Wastewater Projects
...Show More Authors

Infrastructure, especially wastewater projects, plays an important role in the life of residential communities. Due to the increasing population growth, there is also a significant increase in residential and commercial facilities. This research aims to develop two models for predicting the cost and time of wastewater projects according to independent variables affecting them. These variables have been determined through a questionnaire distributed to 20 projects under construction in Al-Kut City/ Wasit Governorate/Iraq. The researcher used artificial neural network technology to develop the models. The results showed that the coefficient of correlation R between actual and predicted values were 99.4% and 99 %, MAPE was

... Show More
View Publication Preview PDF
Crossref (2)
Crossref