Preferred Language
Articles
/
joe-1277
Design and Simulation of a controller for Double Fed Induction Generator turbine Utilized Solar Up Draft Tower
...Show More Authors

This paper introduces a complete design and simulation of a controller for the double fed induction generator (DFIG) turbine. The work also included the solar updraft tower (SUT) design to supply Al-Mahmoudia hospital in Baghdad/Iraq. The design includes the daily average load estimation, annual solar irradiance and, temperature monitoring, and logging.

According to the data obtained from the Ministry of Science and Technology, Baghdad has low wind speed. Therefore, the (SUT) has been designed to generate electrical power depending on the difference between the external and internal air temperature. The temperature difference will generate a suitable airspeed to drive the wind turbine, connected to the proposed (DFIG) generators that generate the appropriate electrical power required. The proposed controller of the DFIG is based on (vector control) by using PI control to feed the power of the rotor circuit parts. The (DFIG) consists of two back-to-back PWM inverters connected between the stator and the rotor. This paper's main goal is to design and simulate a controller for two (DFIG's) under various operating conditions driven by a wind turbine, which is rotated by the warm wind effect inside the solar updraft tower. This is to generate maximum power with constant magnitude and frequency of the output voltage. The proposed controller's performance is verified by using a simulation model built using the MATLAB/Simulink software. The simulation results confirm that the proposed controller (Vector Control), using PI controller maintains both the magnitude and frequency of the output voltage stays constant at the nominal values and stabilization irrespective of the wind speed variations and extract maximum output power. In addition, the controller provides (MPPT) to the turbine to generate the maximum power according to the available wind speed. The torque will give the rotor quadrature current (Iqr), which causes speed change according to the working conditions. The results also showed the steady-state and discussed the two different methods (Vector Control, MPPT) of the control strategy (DFIG). MATLAB and Simulink software used for modeling one of DFIG's modules to supply the hospital load of 276 KW. Besides, simulation results show that the controller demonstrates significant improvements in terms of better stability and faster response.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri May 25 2018
Journal Name
Journal Of Physics: Conference Series
Fabrication & Characterization of AIAS/pSi Heterojunction Solar Cell
...Show More Authors

Silver Indium Aluminum Selenium AgIn1xAlxSe2 AIAS for x=01 thin films was deposited by thermal evaporation at RT and different︣︢︡ ︠︣1thickness 100 150 and 200 nm on the glass Substrate and p2Si wafer to produce AIAS/p3Si heterojunctionsolarcell4 Structural optical electrical and photovoltaicproperties6 are investigated for the samples XRD analysis reveals that all the deposited AIAS films show polycrystalline structure without any change due to increase of thickness Average diameter and roughness calculated from AFM images shows an increase in its value with increasing thickness The optical absorbance and transmittance for samples are measured using a spectrometer type UV Visible 1800 spectra1photometer to study the energy6gap The

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Effect of Design Parameters and Support Conditions on Natural Frequency of Pipe Excited by a Turbulent Internal Flow
...Show More Authors

In this study, the effect of design parameters such as pipe diameter, pipe wall thickness, pipe material and the effect of fluid velocity on the natural frequency of fluid-structure interaction in straight pipe conveying fully developed turbulent flow were investigate numerically,analytically and experimentally. Also the effect of support conditions, simply-simply and clamped-clamped was investigated. Experimentally, pipe vibrations were characterized by accelerometer mounted on the pipe wall. The natural frequencies of vibration were analyzed by using Fast Fourier Transformer (FFT). Five test sections of two different pipe diameters of 76.2
mm and 50.8 mm with two pipe thicknesses of 3.7 mm and 2.4 mm and two pipe materials,stainles

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 01 2009
Journal Name
Iraqi Journal Of Physics
Effect of Glass Inclination of Windows Facing East and West on Solar Radiation Transmittance into Buildings
...Show More Authors

To reduce solar radiation transmittance into buildings through windows facing east or west during summer, a window inclination from vertical position is suggested. The inclination of the window glazing and the rate of unwanted solar radiation during summer can be calculated knowing the dialy inclination of the sun rays. The inclination of window glazing depends on the latitude of the position required. For instance in Baghdad which is at about 33o north latitude a slope of 15o for window glazing is sufficient to prevent about 419 MJ/m2 of total solar radiation energy from penetration during summer for clear glazing of window facing east. This value drops to about 96 MJ/m2 during winter. Therefore the ratio between the energy saved for co

... Show More
View Publication Preview PDF
Publication Date
Fri Jun 01 2012
Journal Name
Advances In Materials Physics And Chemistry
The Effect of Zn Concentration on the Optical Properties of Cd10–xZnxS Films for Solar Cells Applications
...Show More Authors

ABSTRACT:In this paper, Cd10–xZnxS (x = 0.1, 0.3, 0.5) films were deposited by using chemical spray pyrolysis technique, the molar concentration precursor solution was 0.15 M/L. Depositions were done at 350°C on cleaned glass substrates. X-ray dif- fraction technique (XRD) studies for all the prepared film; all the films are crystalline with hexagonal structure .The optical properties of the prepared films were studied using measurements from VIS-UV-IR spectrophotometer at wave- length with the range 300 - 900 nm; the average transmission of the minimum doping ratio (Zn at 0.1%) was about 55% in the VIS region, it was decrease at the increasing of Zn concentration in the CdS films, The band gap of the doped CdS films was varied as 3.7, 3

... Show More
Preview PDF
Publication Date
Mon Mar 23 2020
Journal Name
Baghdad Science Journal
Compact MIMO Slots Antenna Design with Different Bands and High Isolation for 5G Smartphone Applications
...Show More Authors

 In this paper, two elements of the multi-input multi-output (MIMO) antenna had been used to study the five (3.1-3.55GHz and 3.7-4.2GHz), (3.4-4.7 GHz), (3.4-3.8GHz) and (3.6-4.2GHz) 5G bands of smartphone applications that is to be introduced to the respective US, Korea, (Europe and China) and Japan markets. With a proposed dimension of 26 × 46 × 0.8 mm3, the medium-structured and small-sized MIMO antenna was not only found to have demonstrated a high degree of isolation and efficiency, it had also exhibited a lower level of envelope correlation coefficient and return loss, which are well-suited for the 5G bands application. From the fabrication of an inexpensive FR4 substrate with a 0.8 mm thickness level, a loss tang

... Show More
View Publication Preview PDF
Scopus (10)
Scopus Clarivate Crossref
Publication Date
Fri May 01 2020
Journal Name
Applied Thermal Engineering
Thermal performance of a flat-plate solar collector using aqueous colloidal dispersions of graphene nanoplatelets with different specific surface areas
...Show More Authors

The effects of using aqueous nanofluids containing covalently functionalized graphene nanoplatelets with triethanolamine (TEA-GNPs) as novel working fluids on the thermal performance of a flat-plate solar collector (FPSC) have been investigated. Water-based nanofluids with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% of TEA-GNPs with specific surface areas of 300, 500, and 750 m2/g were prepared. An experimental setup was designed and built and a simulation program using MATLAB was developed. Experimental tests were performed using inlet fluid temperatures of 30, 40, and 50 °C; flow rates of 0.6, 1.0, and 1.4 kg/min; and heat flux intensities of 600, 800, and 1000 W/m2. The FPSC’s efficiency increased as the flow rate and hea

... Show More
Crossref (43)
Crossref
Publication Date
Wed Oct 31 2012
Journal Name
Enzyme Research
Simulation of Enzyme Catalysis in Calcium Alginate Beads
...Show More Authors

A general mathematical model for a fixed bed immobilized enzyme reactor was developed to simulate the process of diffusion and reaction inside the biocatalyst particle. The modeling and simulation of starch hydrolysis using immobilized α-amylase were used as a model for this study. Corn starch hydrolysis was carried out at a constant pH of 5.5 and temperature of . The substrate flow rate was ranging from 0.2 to 5.0 mL/min, substrate initial concentrations 1 to 100 g/L. α-amylase was immobilized on to calcium alginate hydrogel beads of 2 mm average diameter. In this work Michaelis-Menten kinetics have been considered. The effect of substrate flow rate (i.e., residence time

... Show More
View Publication
Scopus (14)
Crossref (15)
Scopus Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Journal Of Engineering
Traffic Simulation of Urban Street to Estimate Capacity
...Show More Authors

This research aimed to develop a simulation traffic model for an urban street with heterogeneous traffic capable of analyzing different types of vehicles of static and dynamic characteristics based on trajectory analysis that demonstrated psychophysical driver behavior. The base developed model for urban traffic was performed based on the collected field data for the major urban street in Baghdad city. The parameter; CC1 minimum headway (represented the speed-dependent of the safety distance from stop line that the driver desired) justified in the range from (2.86sec) to (2.17 sec) indicated a good match to reflect the actual traffic behavior for urban traffic streets. A good indication of the convergence between simulat

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Thu Dec 30 2004
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Simulation of naturally Fractured Reservoirs with SimBest ll
...Show More Authors

View Publication Preview PDF
Publication Date
Thu Dec 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
THE USE of DIRECT SOLAR ENERGY in ABSORPTION REFREGERATION EMPLOYING NH3 – H2O SYSTEM
...Show More Authors

This work was conducted to study the coefficient of performance for solar absorption refrigeration by using direct solar energy using aqueous ammonia 0.45 mass fraction (ammonia – water).The experiments were carried out in solar absorption system .The system consisted of solar collector generator (0.25 m × 0.25 m × 0.04m) and condenser cooled by a water bath followed by liquid receiver and evaporator. The results showed that the maximum generator temperature was (92° - 97°) during June 2009, and the minimum evaporator temperature was (5°C - 10°C) for aqua ammonia system.. It was, also, found that the coefficient of performance, cooling ratio and amount of cooling obtainable increased with increasing maximum generator temperature

... Show More
View Publication Preview PDF