Preferred Language
Articles
/
joe-1267
Numerical Study for HAWT Wake shape with different Angles of Attack

Increasing world demand for renewable energy resources as wind energy was one of the goals behind research optimization of energy production from wind farms. Wake is one of the important phenomena in this field. This paper focuses on understanding the effect of angle of attack (α) on wake characteristics behind single horizontal axis wind turbines (HAWT). This was done by design three rotors different from each other in value of α used in the rotor design process. Values of α were (4.8˚,9.5˚,19˚). The numerical simulations were conducted using Ansys Workbench 19- Fluent code; the used turbulence model was (k-ω SST). The results showed that best value for extracted wind energy was at α=19˚, spread distance of wake behind single HAWT was inversely proportional with α value. Highest turbulence intensity level was in small values of α =4.8֯ and 9.5֯, which explain presence of meandering phenomenon in these two cases on contrast of α=19֯, while symmetry in wake shape was more obvious in α=19֯ than other cases due to the moderate turbulence intensity which was found in this case, which indicates that lowest aerodynamics loads on rotor components was in α=19˚. So best distribution for turbines in farm could be achieved at use high values of α in comparison to low values.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jan 10 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Numerical and Experimental Study of Winglet Effect with Different Cant Angles

The present work aims to investigate the aerodynamic characteristics of the winglet cant angle of Boeing 737-800 wing numerically and experimentally. The wing contain two swept angles 38.3o and 29.13o respectively, taper ratio 0.15 and aspect ratio 8.04. The wing involves three types of airfoils sections. Four cant angles for blended winglet have been considered (0o, 34o, 60o, 83.3o). The winglet has been analyzed to find the best cant angle for the wing without and with winglet. These models have been tested theoretically at Reynolds number of 2.06 x106 in order to study the winglet aerodynamic characteristics which consist of coefficient of Drag, coefficient of lift and Lift to drag ratio, pitching moment coefficient and bending moment co

... Show More
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
The Effect of Vehicle Body Shapes on the Near Wake Region and Drag Coefficient: A Numerical Study

The purpose of this paper is to gain a good understanding about wake region behind the car body due to the aerodynamic effect when the air flows over the road vehicle during its movement. The main goal of this study is to discuss the effect of the geometry on the wake region and the aerodynamic drag coefficient. Results will be achieved by using two different shapes, which are the fastback and the notchback. The study will be implemented by the Computational Fluid Dynamic (CFD) by using STAR-CCM+® software for the simulation. This study investigates the steady turbulent flow using k-epsilon turbulence model. The results obtained from the simulation show that the region of the air separation behind the vehicle

... Show More
View Publication Preview PDF
Publication Date
Wed May 17 2023
Journal Name
Journal Of Engineering
Numerical Study of Solar Chimney with Absorber at Different Locations

Heat transfer process and fluid flow in a solar chimney used for natural ventilation are investigated numerically in the present work. Solar chimney was tested by selecting different positions of absorber namely: at the back side, front side, and at the middle of the air gap. CFD analysis based on finite volume method is used to predict the thermal performance, and air flow in two dimensional solar chimney under unsteady state condition, to identify the effect of different parameters such as solar radiation. Results show that a solar chimney with absorber at the middle of the air gap gives better ventilation performance. A comparison between the numerical and previous experimental results shows fair agreement.

View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Investigation of Doppler broadening Compton scattering for aluminum element at different angles

View Publication Preview PDF
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Mechanical Science And Technology
Optimization of a rectangular pin fin using elliptical perforations with different inclination angles

View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Dec 30 2017
Journal Name
International Journal Of Heat And Technology
Optimization of a rectangular pin fin using rectangular perforations with different inclination angles

View Publication
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Tue Aug 22 2017
Journal Name
Heat Transfer—asian Research
Thermal Enhancement from Pin Fins by Using Elliptical Perforations with Different Inclination Angles
Abstract<p>Many of the proposed methods introduce the perforated fin with the straight direction to improve the thermal performance of the heat sink. The innovative form of the perforated fin (with inclination angles) was considered. Present rectangular pin fins consist of elliptical perforations with two models and two cases. The signum function is used for modeling the opposite and the mutable approach of the heat transfer area. To find the general solution, the degenerate hypergeometric equation was used as a new derivative method and then solved by Kummer's series. Two validation methods (previous work and Ansys 16.0‐Steady State Thermal) are considered. The strong agreement of the validation results (0.3</p> ... Show More
View Publication
Scopus (3)
Crossref (4)
Scopus Crossref
Publication Date
Fri Dec 27 2024
Journal Name
Iraqi Journal Of Mechanical And Material Engineering
WAKE ROLL-UP BEHIND WINGS WITH GROUND EFFECT

A numerical method for the calculation of the three-dimensional wake rollup behind symmetric wings with ground effect and its aerodynamic characteristics for steady low subsonic flow have been developed. A non-planar quadrilateral vortex-ring method with vortex wake relaxation iterative scheme for lifting surfaces is obtained. A computer program was build to treat wings with breaks, span wise trailing edge flaps, local dihedral angle, camber, twist and ground effect. Forces and moments are obtained from vector product of local velocity and vortex strength multiplied by density. The program has been validated for a number of configurations for which experimental data is available. Good agreement has been obtained for these configurations. Al

... Show More
View Publication
Publication Date
Sat Aug 06 2022
Journal Name
Ijci. International Journal Of Computers And Information
Techniques for DDoS Attack in SDN: A Comparative Study

Abstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sat Jul 28 2018
Journal Name
Journal Of Engineering
Experimental and Numerical Analysis of Expanded Pipe using Rigid Conical Shape

The experimental and numerical analysis was performed on pipes suffering large plastic deformation through expanding them using rigid conical shaped mandrels, with three different cone angles (15◦, 25◦, 35◦) and diameters (15, 17, 20) mm. The experimental test for the strain results investigated the expanded areas. A numerical solution of the pipes expansion process was also investigated using the commercial finite element software ANSYS. The strains were measured for each case experimentally by stamping the mesh on the pipe after expanding, then compared with Ansys results. No cracks were generated during the process with the selected angles. It can be concluded that the strain decreased with greater angles of con

... Show More
View Publication Preview PDF
Crossref (3)
Crossref