Humanoids or bipedal robots are other kinds of robots that have legs. The balance of humanoids is the general problem in these types when the other in the support phase and the leg in the swing phase. In this work, the walking pattern generation is studied by MATLAB for two types of degrees of freedom, 10 and 17 degrees of freedom. Besides, the KHR-2HV simulation model is used to simulate the experimental results by Webots. Similarly, Arduino and LOBOT LSC microcontrollers are used to program the bipedal robot. After the several methods for programming the bipedal robot by Arduino microcontroller, LOBOT LSC-32 driver model is the better than PCA 96685 Driver-16 channel servo driver for programming the bipedal walking robot. The results showed that this driver confirms the faster response than the Arduino microcontroller in walking the bipedal robot. The walking pattern generation results showed that the step height for 17 degrees of freedom bipedal robot increases approximately (20%) than 10 degrees of freedom bipedal robot, which decreases the step period by about (7%). Also, the time interval of the double support phase for 17 degrees of freedom bipedal robot increases approximately (11%) with decreases step length approximately (33% on X-axis) and (16% on Z-axis).
In this work magnetite/geopolymer composite (MGP) were synthesized using a chemical co-precipitation technique. The synthesized materials were characterized using several techniques such as: “X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample-magnetometer (VSM), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), Brunauer–Emmett–Teller (BET) and Barrentt-Joyner-Halenda (BJH)” to determine the structure and morphology of the obtained material. The analysis indicated that metal oxide predominantly appeared at the shape of the spinel structure of magnetite, and that the presence of nano-magnetite had a substantial impact on the surface area and pore st
... Show MoreThis paper is concerned with pre-test single and double stage shrunken estimators for the mean (?) of normal distribution when a prior estimate (?0) of the actule value (?) is available, using specifying shrinkage weight factors ?(?) as well as pre-test region (R). Expressions for the Bias [B(?)], mean squared error [MSE(?)], Efficiency [EFF(?)] and Expected sample size [E(n/?)] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants included in these expressions. Comparisons between suggested estimators, with respect to classical estimators in the sense of Bias and Relative Efficiency, are given. Furthermore, comparisons with the earlier existing works are drawn.
The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThis research presents a response surface methodology (RSM) with I‐optimal method of DESIGN EXPERT (version 13 Stat‐Ease) for optimization and analysis of the adsorption process of the cyanide from aqueous solution by activated carbon (AC) and composite activated carbon (CuO/AC) produced by pyro carbonic acid microwave using potato peel waste as raw material. Pyrophosphate 60% (wt) was used for impregnation with an impregnation ratio 3:1, impregnation time of 4 h at 25°C, radiant power of 700 W, and activation time of 20 min. Batch experiments were conducted to determine the removal efficiency of cyanide from aqueous solution to evaluate the influences of various experimental parameters su
Tight reservoirs have attracted the interest of the oil industry in recent years according to its significant impact on the global oil product. Several challenges are present when producing from these reservoirs due to its low to extra low permeability and very narrow pore throat radius. Development strategy selection for these reservoirs such as horizontal well placement, hydraulic fracture design, well completion, and smart production program, wellbore stability all need accurate characterizations of geomechanical parameters for these reservoirs. Geomechanical properties, including uniaxial compressive strength (UCS), static Young’s modulus (Es), and Poisson’s ratio (υs), were measured experimentally using both static and dynamic met
... Show MoreThis investigation pertains to the evaluation of water quality in SAWA Lake, located in the Al-Muthanna province of Southern Iraq, from 1977 to 2020. Understanding the water quality and assessments of this Lake is of great importance. The Lake is home to small, transparent, blind fish measuring approximately 10 cm and is often referred to as the "wonderful" or "strange" Lake due to its many unique features. The study focuses on several elements to represent water quality, including total dissolved solids (TDS), electrical conductivity (EC), pH, and temperature (T), which were measured directly in the field. Additionally, scientific concepts such as K+, Ca2+, Cl-, HCO
Wireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener
... Show More