Preferred Language
Articles
/
joe-124
Energy and Exergy Analyses of Heat Pump Cycle with Refrigerant Injection Technology

The effect of refrigerant injection techniques on the performance of heat pump system based on exergy analysis was studied theoretically. Three refrigerant injection techniques were used; the first was achieved by injected vapour in volume ratios from 1 to 7% in the accumulator. The second was injection liquid refrigerant in the discharge line with the aid of Liquid Pressure Amplification (LPA) pump, with volume ratios from 1 to 10%. The third was a hybrid injection with volume ratios of injected vapour and liquid varied from 1 to 3% and 1 to 10%; respectively. The following improvements in cycle performance were observed. For vapour injection technique, the best ratio of injection was 5%, the exergy destruction reduced by 21% and exergy efficiency enhanced by 14.6%. For liquid injection technique the best ratio of injection was 6%, the reduction in exergy destruction was 34% while the exergy efficiency increased by about 21.4%. The hybrid injection technique increased the exergy efficiency by 23% when the volume ratio of vapour and liquid injections are 3% each. The effect of condensing pressure on the cycle performance was studied also. The optimum exergy efficiency of the cycle was 54.55% achieved when the condensing pressure was 15 bars.

                                              

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
New Green Modalities of Flow Injection Technology for Assaying Anti-Allergic Drugs in Pharmaceutics and Biological Samples

A new approach and the developed FIA technique with many advantages (economic, fast, simple, accurate, and high throughput) are used to determine the decongestant drugs (Phenylephrine.HCl, Oxymetazoline.HCl) in biological samples, pharmaceutical formulations, and pure samples via continuous flow injection technique by oxidative coupling reaction, where the method depends on the interaction of the decongestant drug with organic reagents to produce colored compounds, where Phenylephrine reacts with 4-AAP at λmax503 nm to produce a red compound, and the Beer’s law range of 10-600 μg.mL-1 . As for Oxymetazoline, it reacts with DNPH at λmax 631nm to produce a green compound with a linear dynamic range of

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Dec 31 2014
Journal Name
Al-khwarizmi Engineering Journal
Energy Saving of Heat Gain by Using Buried Pipe Inside a Roof

Abstract

    This work deals with a numerical investigation to evaluate the utilization of a water pipe buried inside a roof to reduce the heat gain and minimize the transmission of heat energy inside the conditioning space in summer season.     The numerical results of this paper showed that the reduction in heat gain and energy saving could be occurred with specific values of parameters, like the number of pipes per square meter, the ratio of pipe diameter to the roof thickness, and the pipe inlet water temperature. Comparing with a normal roof (without pipes), the results indicated a significant reduction in energy heat gain which is about 37.8% when the number of pipes per m

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
The Energy Spectra and Heat Capacity of GaAs Gaussian Quantum Dot in an External Magnetic Field

In this paper, a theoretical study of the energy spectra and the heat capacity of one electron quantum dot with Gaussian Confinement in an external magnetic field are presented. Using the exact diagonalization technique, the Hamiltonian of the Gaussian Quantum Dot (GQD) including the electron spin is solved. All the elements in the energy matrix are found in closed form. The eigenenergies of the electron were displayed as a function of magnetic field, Gaussian confinement potential depth and quantum dot size. Explanations to the behavior of the quantum dot heat capacity curve, as a function of external applied magnetic field and temperature, are presented.

Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Using Nanoparticles for Enhance Thermal Conductivity of Latent Heat Thermal Energy Storage

Phase change materials (PCMs) such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES) has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.%) of (TiO2) nano-particles with about (10nm) diameter. It is found that the phase change temperature varies with adding (TiO2) nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity ha

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 31 2022
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
THE ROLE OF EFFLUX PUMP FOR ANTIBIOTIC RESISTANCE IN BACTERIA: THE ROLE OF EFFLUX PUMP FOR ANTIBIOTIC RESISTANCE IN BACTERIA

ABSTRACT                

The multi-drug resistant efflux pump is a glycoprotein pump whose function is to push foreign substances. The efflux pump is found in humans, animals. It also has wide-ranging properties in  bacteria and fungi. They are found in all species of bacteria, and efflux pump genes can be found in bacterial chromosomes or mobile genetic elements, such as plasmids. The most sensitive function that leads to a global problem is its resistance to antibiotics in bacterial cells, which increases the ability to bacteria from becoming strong virulence factors that most or all antibiotics cannot kill. It also has othe

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 04 2015
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Off-Pump Coronary Artery Bypass Graft

Background: Coronary artery bypass graft is routinely performed on an arrested heart using cardiopulmonary bypass with aortic cross clamping and Cardioplegia. Off-pump coronary artery bypass graft (OPCABG) is being increasingly used in selected cases as an attempt to decrease morbidity and mortality.
Objective: The main objective of this study is to clarify those patients who are indicated for OPCABG despite it is surgically demanding technique and to evaluate the mortality and morbidity associated with such procedures.
Patients and methods: It is a retrospective study of 28 patients with coronary artery disease, in need for coronary artery bypass graft admitted and surgically treated at the Iraqi Centre fo

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu May 31 2012
Journal Name
Al-khwarizmi Engineering Journal
The Stability Conditions of the Pump Structure Vibration

 The general approach of this research is to assume that the small nonlinearity can be separated from the linear part of the equation of motion. The effect of the dynamic fluid force on the pump structure system is considered vibrates at its natural frequency but the amplitude is determined by the initial conditions. If the motion of the system tends to increase the energy of the pump structure system, the vibration amplitude will increase and the pump structure system is considered to be unstable. A suitable MATLAB program was used to predict the stability conditions of the pump structure vibration. The present research focuses on fluid pump problems, namely, the role played by damping coefficient C, damping factor

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 05 2021
Journal Name
Materials
Optimum Placement of Heating Tubes in a Multi-Tube Latent Heat Thermal Energy Storage

Utilizing phase change materials in thermal energy storage systems is commonly considered as an alternative solution for the effective use of energy. This study presents numerical simulations of the charging process for a multitube latent heat thermal energy storage system. A thermal energy storage model, consisting of five tubes of heat transfer fluids, was investigated using Rubitherm phase change material (RT35) as the. The locations of the tubes were optimized by applying the Taguchi method. The thermal behavior of the unit was evaluated by considering the liquid fraction graphs, streamlines, and isotherm contours. The numerical model was first verified compared with existed experimental data from the literature. The outcomes re

... Show More
Scopus (10)
Crossref (11)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri Nov 24 2023
Journal Name
Iraqi Journal Of Science
Effect of Magnetichydrodynamic on unsteady flow and heat transfer upon stretching sheet with non – uniform heat

In this paper we study the effect of magnetichydrodynamic upon the boundary
layer flow and heat transfer on a permeable unsteady stretching sheet with non –
uniform heat source / sink. It found that the momentum and energy equations are
controlled by many different dimensionless parameters such as prandtle number
pr , unsteadiness parameter A , constant pressure So , coefficient of the space
dependent  A , the temperature dependent  B , and the MHD parameter M . The
analytic solutions are obtained by using suitable similarity transformations and
homotopy analysis method (HAM).
Furthermore, we analysis the effects of all dimensionless number, there are
mentioned above, upon the velocity distribution and

... Show More
View Publication
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
A Review of the Electrical Submersible Pump Development Chronology

The electric submersible pump, also known as ESP, is a highly effective artificial lift method widely used in the oil industry due to its ability to deliver higher production rates compared to other artificial lift methods. In principle, ESP is a multistage centrifugal pump that converts kinetic energy into dynamic hydraulic pressure necessary to lift fluids at a higher rate with lower bottomhole pressure, especially in oil wells under certain bottomhole condition fluid, and reservoir characteristics. However, several factors and challenges can complicate the completion and optimum development of ESP deployed wells, which need to be addressed to optimize its performance by maximizing efficiency and minimizing costs and uncertainties. To

... Show More
Crossref (2)
Crossref
View Publication Preview PDF